US009307260B2

a2 United States Patent

Yoshimatsu et al.

US 9,307,260 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(30)

Jul. 30, 2010

(1)

(52)

(58)

IMAGE DECODING APPARATUS, IMAGE
DECODING METHOD, IMAGE CODING
APPARATUS, AND IMAGE CODING
METHOD

Inventors: Naoki Yoshimatsu, Aichi (JP); Takeshi
Tanaka, Osaka (JP); Keiichi Kurokawa,
Hyogo (IP)

PANASONIC INTELLECTUAL
PROPERTY MANAGEMENT CO.,
LTD., Osaka (JP)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1014 days.
Appl. No.: 13/498,685
PCT Filed: Jul. 27,2011

PCT No.:

§371 (D),
(2), (4) Date:

PCT/IP2011/004259

Mar. 28, 2012

PCT Pub. No.: W02012/014471
PCT Pub. Date: Feb. 2, 2012

Prior Publication Data

US 2012/0183079 Al Jul. 19,2012
Foreign Application Priority Data

................................. 2010-173069

(P)

Int. Cl1.
HO4N 7/26
HO4N 19/436

(2006.01)
(2014.01)

(Continued)

U.S. CL
CPC

HO4N 19/436 (2014.11); HO4N 19/129
(2014.11); HO4N 19/156 (2014.11);

(Continued)
Field of Classification Search
CPC ... HO4N 19/436; HO4N 19/44; HO4N 19/129;
HO4N 19/156; HO4N 19/167;, HO4N 19/174,
HO4N 19/61; HO4N 19/70; HO4N 19/85

Mode
°

USPC coovivveeeiienee 375/240.25, 240.01, E7.026
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2/2011 Kashima et al.
3/2005 Regunathan

7,881,541 B2
2005/0053158 Al* HO4N 19/105

375/240.25

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2000-295616 10/2000
Jp 2003-32679 1/2003
(Continued)
OTHER PUBLICATIONS

Rong Luo, Bin Chen, “A Hierarchical Scheme of Flexible
Macroblock Ordering for ROI based H.264/AV Video Coding” in
Advanced Communication Technology, 2008, ICACT 2008. 10th
International Conference on, vol. 3, No., pp. 1579-1582, Feb. 17-20,
2008.*

(Continued)

Primary Examiner — William C Vaughn, Jr.

Assistant Examiner — Naod Belai

(74) Attorney, Agent, or Firm — Wenderoth, Lind & Ponack,
LL.P.

(57) ABSTRACT

An image decoding apparatus (100) capable of appropriately
executing parallel decoding processing by a simple structure
includes: a stream segmentation control unit (140) that des-
ignates a processing target area, and selects a portion of a
segment stream based on a position of the processing target
area; M stream segmentation units (130) that generate MxN
segment streams by executing stream segmentation process-
ing on designated M processing target areas in parallel; and N
decoding engines (120) that decode respective portions of the
N segment streams including the selected portion in parallel.
In the case where a slice included in the processing target area
is segmented into a plurality of slice portions and assigned to
aplurality of segment streams, each stream segmentation unit
(130) reconstructs, for each segment stream, a slice portion
group made up of one or more slice portions assigned to the
segment stream, as a new slice.

16 Claims, 59 Drawing Sheets

Stream
segmentation|
control unit

Decoder

Information

Selection information

‘Allocation control

[t stream |

unit |
t “30
[sraam

Bit stream Junit

“U3ca Y30

Display
device

ST

Stream buffer

151 o BRI

L Frame memory]
|\ 153

| Memory

100/ M-th segment stream buffer 152

First segment stream buffer 152 §gq

US 9,307,260 B2

Page 2

(51) Int.Cl P 2008-72647 3/2008

P 2008-306450 12/2008

szx ;Z% (3812'8}) P 2009-246539 10/2009

(2014.01) P 2010-41352 2/2010

HO4N 19/129 (2014.01) p 2010-109572 5/2010

HO4N 19/61 (2014.01) WO 2007/136093 11/2007

HO4N 19/156 (2014.01) WO 2008/139708 11/2008

WO 2009/119888 10/2009

HON 19/174 (2014.01) WO 2009/150801 12/2009

HO4N 19/167 (2014.01) WO 2010/041472 4/2010

HO4N 19/85 (2014.01) WO 2010/067505 6/2010

(52) US.CL

CPC ... HO04N19/167 (2014.11); HO4N 19/174 OTHER PUBLICATIONS

(2014.11); HO4N 19/44 (2014.11); HO4N 19/61
(2014.11); HO4N 19/70 (2014.11); HO4N 19/85

(2014.11)
(56) References Cited
U.S. PATENT DOCUMENTS
2006/0093042 Al 5/2006 Kashima et al.
2008/0031329 Al* 2/2008 Iwata HO4N 19/176
375/240.12
2008/0063082 Al* 3/2008 Watanabe et al. 375/240.23
2008/0069244 Al 3/2008 Yano
2008/0151997 Al* 6/2008 OQUZ ...coevveveennnnn 375/240.02
2010/0080303 Al 4/2010 Suzuki
2010/0080304 Al* 4/2010 Reddyetal. 375/240.26

2010/0128801 Al
2010/0215263 Al
2010/0254620 Al
2010/0266049 Al
2010/0322317 Al

5/2010 Hashimoto

8/2010 Imanaka
10/2010 Iwahashi et al.
10/2010 Hashimoto et al.
12/2010 Yoshimatsu et al.

FOREIGN PATENT DOCUMENTS

5/2006
3/2008

JP 2006-129284
JP 2008-67026

International Search Report issued Nov. 1, 2011 in corresponding
International Application No. PCT/JP2011/004259.

Jie Zhao et al., “New Results using Entropy Slices for Parallel Decod-
ing”, ITU-Telecommunications Standardization Sector Study Group
16 Question 6 Video Coding Experts Group (VCEG) 35" Meeting:
Berlin, Germany, Document VCEG-AI32, ITU-T, Jul. 2008, pp. 1-9.
Bongsoo Jung etal., “Adaptive slice-level parallelism for H.264/AVC
encoding using pre macroblock mode selection”, Journal of Visual
Communication and Image Representation, Oct. 2008, vol. 19, No. 8,
pp. 558-572.

Michael Roitzsch, “Slice-Balancing H.264 Video Encoding for
Improved Scalability of Multicore Decoding”, EMSOFT °07 Pro-
ceedings of the 7" ACM & IEEE International Conference on
Embedded Software, Sep. 30, 2007, pp. 269-278.

Extended European Search Report issued May 6, 2015 in corre-
sponding Furopean Application No. 11812073.2.

Eiji Iwata et al.,, “Exploiting Coarse-Grain Parallelism in the
MPEG-2 Algorithm,” Internet Citation, Sep. 1998, XP002300648,
URL: Stanford University, Computer Systems Lab, retrieved on Oct.
13, 2004, pp. 1-13.

* cited by examiner

US 9,307,260 B2

Sheet 1 of 59

Apr. 5, 2016

U.S. Patent

ZST Joyng weass yuswbas yy-|W \ooH
omH/ ZST Jo4Nnq weans Juswbas 1s.14 /
AJOWB ——
£sT T Tk A
AJowsw swel I I Ja4Nnqg weans
| 577 IRIBENS 5

Hdl ||||| = =R B = i}

SDIASP ' sulbus &
H 6uipossp y1-n l€—

Aeidsia e P w,u_ w_./omﬁ
) 1] W |
1N mc_@cm_AF,
1 [Buipoosp pucoasi€
i —— T
: auibus <
1 [DUIPOYOP SUI PR 71 uonewojut A A
[~ |0J3U0D UOREIO| Y

or1— 3iun [043U00 13p023g
uoreWw.IoJul UoRoajag |UoeIuswbas
weans
2
~ uopewIojul &
T 'OId

wea.ns g

U.S. Patent Apr. 5, 2016 Sheet 2 of 59 US 9,307,260 B2

FIG. 2A

MB line

2

First decoding engine

Second decoding enginel:

Third decoding engine iz
Fourth decoding engine \\\->

First decoding engine

Second decoding engine

Third decoding engine

Fourth decoding engine

First decoding engine

Second decoding engine

Already decoded macroblock

Currently decoded macroblock

US 9,307,260 B2

Sheet 3 of 59

Apr. 5, 2016

U.S. Patent

320|goJoew papodsp Ajpusiind

320|qoJoew papodsp Apead|y

Ul gIN——
Jied aull g

Ul dIN

d¢ "'DId

Y

Y

auibua buipodap 3sd14

auibua buipolap yiino4

auibua buipodap pJiylL

auibua buipodap puodasg

auibua buipodap 3sd14

U.S. Patent Apr. 5, 2016 Sheet 4 of 59 US 9,307,260 B2

FIG. 3

(a) / mba
Slice header ha J

~Slice A

_-mbb
- Slice B

Slice header hc

L10 > Slice C
L11
L12 ~—mbc

(b)

Slice header ha

|First segment stream |

[Second segment stream|

Slice header
copy ha’

[Third segment stream |

|F0urth segment stream |

[First segment stream |

[second segment stream|

Slice header hb

Slice header
copy hb’
Slice header hc

[Third segment stream |

|Fourth segment stream |

[First segment stream |

L10
—> |Second segment stream|

Slice header
copy hc’

L11
— |Third segment stream |

Li12
—_— |Fourth segment stream |

US 9,307,260 B2

Sheet 5 of 59

Apr. 5, 2016

U.S. Patent

(T + Tsnuiwsqw ul yipimm oid) x (U + Asodqui) = [u]aoys™ ur qu™3s41y) Adod uapeay a01|S

(01s” Ul quiT3sl) Japeay 01|S

v "DId

US 9,307,260 B2

Sheet 6 of 59

Apr. 5, 2016

U.S. Patent

uopew.ojul aull g Jdapeay a2l
5o —__PU-2US 1 aw PEoH oIS
. 211~ oy~
5o —1__Pue-921IS ! o PR IS
T e TV
uopew.aojul aul
5o —1__Pue-221IS e 1OPESH IS
011~ o2y~
uonewLiojul aul Jdapeay adl
3o —1__Pua-IIS s PERa S
61~ oy~ A
uojjewliojul
pus-aoyg | UM EW aull aw oull aW Ul W | Jepeay 201IS
o Z11— 111 o011~ 617 oy
qQ 'OId

weaJys juswbss yunod ()

weaJ3s Juswbas paiyL (p)

weauls Juswbas puodas (o)

wesaJls Juswbss 3sui4 (q)

weaJss g (e)

US 9,307,260 B2

Sheet 7 of 59

Apr. 5, 2016

U.S. Patent

Z 24np1d

A

T ®4Mdld

A

r

0 24n3dld
A

¥ 921IS

€ VIS [Sdd

¢ 92IS

T 9IS [TSdd

0 931IS

0Sdd| SdS

LM

LN

)

V9 OIS

wesJs g

US 9,307,260 B2

Sheet 8 of 59

Apr. 5, 2016

U.S. Patent

W | €-——
poous | zsddi| zeous To0ls [1Sddl0Sdd: SdS! un uokeUsLbaS
&----» , &y LWESJIS puodas
: g _ jun uonejuswWbas
€ S9US Nmn_"n_ \.mn_n_y_ 'y 0 SMS 0Sdd mn_Mm, wieaJ3s 1s4i4
- "’ LY Ly Ly ' J1un |0J3u0d
h 3 3 23 T3 0 uonjeuswbss wesns

d9 'OId

U.S. Patent

US 9,307,260 B2

Apr. 5, 2016 Sheet 9 of 59
FIG. 7
SPS || SPS |:| Sps |:| _SPs
PPSO || PPSO || PPSO |:[PPSO
Slice 0 || Slice0 || Slice 0 | :| Slice 0
PPS2 || PPS2 || PPS2 || PPS2
Slice 3 || Slice3 || Slice 3 || Slice 3
\First segment
stream buffer 152

PPS1 PPS1 PPS1 PPS1
Slice 1 Slice 1 Slice 1 Slice 1
Slice 2 Slice 2 Slice 2 Slice 2
Slice 4 Slice 4 Slice 4 Slice 4

\Second segment
stream buffer 152

US 9,307,260 B2

Sheet 10 of 59

Apr. 5, 2016

U.S. Patent

. uoneuwojul Jaquinu jiun ynN

:uoljewIoUl JoNg Wwesd)s juswbog

. uoneuwojul Jaquinu jiun ynN

:uoljewIoUl JayNg weal)s juswbag

o uoneuwojul asqguinu jiun ynN

:UoIjeLLLIOUIl JaNg Weal)s juswbag

. uoneuwuojul lsquinu jiun ynN

:uoljewlojul Jayng wealjs juswbag

. uonjew.Jojul Jeaguinu jiun yN

:uoIIeW.IOJUl J3JJNg weaJls Juswbag

8 'DId

uoljewldojul uonid9|as ¢ 9IS
uoljewldojul uonda|as ¢ Iadl|s
uoljewldojul uonda|as ¢ 3adl|s
uonjewlojul uonda|as T adl|s

UOIIBWIOJUI UOIID3|3S O 3DI|S

U.S. Patent Apr. 5, 2016 Sheet 11 of 59 US 9,307,260 B2

FIG. 9

Obtain bit stream

>

Determine picture to be
processed, and allocate slices

510

- S12

'Y
>

S14

Extract MB lines by —
segmenting picture

S16

Slice reconstruction
processing needed?

S18

Slice reconstruction processing

- Slice header insertion processing

- MB address information update processing
- Slice-end processing

- Skip run modification processing

- QP delta setting processing

)¢

Assign MB line to one of first }—S520
to N-th segment streams to
be generated

¥

Parallel decoding

524
All MB lines assigned?

Yes S26
Al| pictures segmented?

S22

No

US 9,307,260 B2

Sheet 12 of 59

Apr. 5, 2016

U.S. Patent

¢ST 4a4nqg
weans
Juawbas

A_A A A

DS " (8ET) A8ET~ ... aveyo .
N A Pl ezeT 1€l
/o " ! N nunf wnf: o
L : ! uonedipowlley Buipodap JaAe) ' \ \
| " ! WNiet eyop gd)| ! NI0|q0408 N !
~ < T I uoip=3ep - !
€9 ||t JAepunog qoET! |
o |] uawbag ' un |
: ! ! < buIpo2sp JoAe| !
1 P 1 1 \"\ 1 1
1 ! 12N \ jun mo_.m.m.w.u.o.‘_m-mmm_mvu__m.m un uun IST
wn| led T oLl e (PET) APET | |erowas co_ﬁwww_w /
uonasulf ! — e eOCT ainvo.
aa| el L ol (8€T) e8ET (S9ET .. 9 v gd3 S
<Je " N yun| nun|: o
el ! : aun uonesyipow|«H 6uIpodap JaAe “
I<STY ! Nl eyepdd| ! |
V<o |] uoi13p " 09098 W ! B Jayng
| 1<l | T JMepunog — —i 1 < <{weans
Am < d WRWBIS > co_pmuc__uoEAm. BuIpooap J2Ae| |
) RN i <1 unidpig| | e1ep 2011s [T
1pin HE N S]) | Heser
[N ! e6cT BLET un Buissaooud eyep IS i EOMH//
T (beD) erET— —
7IUN UOI1I9sU| Jopesay 20I|S JuswaBeuew
d1epeaY 201iS €e1T~ ‘w BuISS300.d
Sdd 'SdS A
Jun uoneluswbas wesals
ocT— UOIIBLUIOJUI [0J3UCD UO0IIE0|lY &
uonEWIOJUI 3PO
0T "SI

Jun Buissado.d ejep 201|S |

US 9,307,260 B2

—1

A pe1

HUN UO3suU| Jdpesy 01|S|

AE

T

N

lun Buissadold eyep 301|S |

o < |
o™ [20]

Sheet 13 of 59

Apr. 5, 2016

]
L4 eo
Jun UoIIasul Japeay ad1|S]
T
o
1 _Tf_cs Buissaso1d ejep so1iS | aan
< PET W A 29
Jun UoIIasul Japeay ad1|S]
€eT
$ _______

Y

\

Jun buissadoud eyep 201|S |

51

T

/

\

c

T

n uonJasul lapeay mu__m_

o

T

\

Japeay aoi|s

U.S. Patent

TT "OI4

(P)

(9)

(9)

(e)

US 9,307,260 B2

Sheet 14 of 59

Apr. 5, 2016

U.S. Patent

el
lapeay a01|S <« 194nq JspesH |Q_H_|A
151} |€&—
\\
PEET e
peeA Jun ajepdn ssauppe JspesH mmmﬁz
» jlun uonyedyjiuspl
qeeT— 193UN0d UOIIBSUl JOPEdH |« o2dAl VYN
A Jlun UoIBSUl JBpeay 0DI|S
\
€eT
CN— | _CIN | T
Y Y
Jun uoIalep Alepunog juswbasg
\

(96ST ‘e6ET) 6ET

¢T 'Ol

wesJs g

US 9,307,260 B2

Sheet 15 of 59

Apr. 5,2016

U.S. Patent

oull g P4IYL NmH
Ul dIN puod3s \

121%
aul| dIA 3414 esJe yunod
ey eote paiyL b &3P

-R eaue puodag |— P

N
]

eose 15y | — FP

%
.

V.
7

oy
i

R

D 9IS g 201IS v 991IS

€T 'OId

US 9,307,260 B2

Sheet 16 of 59

Apr. 5, 2016

U.S. Patent

14A

FIG.

Slice-end

information ea’

oo oo sse
ped AR
e %
RBIRRLNIR
RIS
DOXRNERS SPRRRROBEL
DOIPIRHRABRINIIBNNS
AR SIS L
S4T30 SOTEIATND AT S0%%e;
Siesrariens Shrariessty etetetuy Koot
e el SRS
TSNS Srteretat Sarenatisy £00ss
2 SRS £10000000 008
Y Ry s s
Bttt STt ey S0
e e SRS
R) (e
SRRl (0000 Ltelenns raet
T e
T s
Satetetetel Tetetetetel Setetetetel Sotetelele!
e e TS e
R SR SRR e
s S sieres sesesoses
S R R
S S e RS e
B R BRI RAERIRRE
SI0IITISE SRS HLRIAONLY. SN $LrIOrl
SN S S50 NS Lol N
BB IRLBIRIEE,
R e s s e |
IO e S s S
SN TSI RNt SR
e S S b
T el S Rt S
T s L s e
T S St et e
arasetetete 65etetetele tetetelels atetetetele oLetel
£ R SRISINE eeitie s
8I80TH0T 4T9T8T0TO0e 9T0TaTOTTY 470T6TaTeTe 4 TeTeTeTe
S ey Snesiet Setetatatet sotaratate
TR I S S s
SRS S S S S
‘olelelelels ola%ele0%e wleleletele olelelelele Wle%letely
S R TS s s
S b

XK
Btatatots

Slice header hb

. 14B

FIG

Slice-end

information ea’

Slice header hb

Slice-end

information ea’

U.S. Patent Apr. 5, 2016 Sheet 17 of 59 US 9,307,260 B2

FIG. 15

(Start)

>y

Output data to be processed to store 5100
data in segment stream buffer

5102

End of MB line
reached?

header processing detail
notification received?

header processing detail
otification = "Output'?

Execute slice-end processing | 5108
CABAD: "end_of_slice_flag" =1
CAVLD: Assign "rbsp_slice_trailing_bits"

. : . —31—5110
Transmit end processing completion notification

S112

header processing completion
notification received?

No

US 9,307,260 B2

Sheet 18 of 59

Apr. 5, 2016

U.S. Patent

[wealjs Juswbas ynod|<—|:

| weaJuls JusWbaS pIIYL |<«—

|weaJls Juswbas puoddS |«

| weaJ3s Juswbas 1514 |<«—

[weais juswbas yinod|<—

| weaJ}s Jusawbas paiyl [<—F:

|weaJ)s Juswbas puodds |<«—

[weans Juswbas 351 |<—f:

[

¥o0|qoJoew paddis

VOT 'Ol

-

320|goJoew |ewIoN

US 9,307,260 B2

Sheet 19 of 59

Apr. 5, 2016

U.S. Patent

[wealjs Juswbas y1nod|«—

_ wieaJls Juawbas pJiyl _A|

_Emmbm Juswbas puodasg _A|

| weaJ3s Juswbas 1Sl |«

| wesJ3s Juswbas yunod [<«—

[weans Juswbes paiyl j<—|:

_Emmbm Juswbas puodasg _A|

[weas3s Juswbas 3siid|<—;

[

¥o0|qoJoew paddis

491 'OId

i

320|goJoew |ewIoN

US 9,307,260 B2

Sheet 20 of 59

Apr. 5, 2016

U.S. Patent

B6ET BeqeT
jun
Hun UOIDBNXD |« Hun
PR J1un GuIpod Jun Hun un dixs buipooep
Alepuno < ! ! < Sl - . 19Ae
pchEmmM uns dpis |~ Juonippy| S ejep 20| _
unt dijs iep {dl|S
/ co1— A / [
125k yun| TOT 091
Buipjoy pue
uole|nwindoe
A uni dixs
¢ Jun uonedipow unJd dps
BLET
LT "'OI4

US 9,307,260 B2

Sheet 21 of 59

Apr. 5, 2016

U.S. Patent

(pu3)

07es —1

SA
unt—dps quw indin
vﬁmm_ 2 n_> S _
Nﬁmm_ uns dpjs qu apod-ay |
unl—dps qu V\,A |

MaUu se uolnod Jjey puodss 195

A

81ZS —

weays Juswbas yoes
JoJ una—dps qu Aa4d se uonod
Jley 1sd1j pjoy pue sjejnwndoy

A

91ZS —1

Alepunogq aul| g 1e uolnod
Jley puooss pue uojod jey
1541 OquUl unt—dpsT qui Juswbag

A

und dps qu

01 und—dpjs g Aa4d ppy

unJd dps qu Aaud
= unt dps qu

coull diN Ul
unJd dps qui 3sJi4

¥0cZs

TETN

_ uoljisod »20|qotoew sjendjed |

V> SOA

cpauleiqo una—deps q

v2eS— A

¢pu 201|S 7

>

GETSD

8T 'OI4

US 9,307,260 B2

Sheet 22 of 59

Apr. 5, 2016

U.S. Patent

[weans uswbas y3inod |<—|;

| wea.3s Juswbas piIyl |<«—

|weaujs Juswbas puodds [«—

| wesu3s JuUsW6HIS 114 [«—

| weaJ}s Juawbas Yinod [<«—

| weaJ)s JuswWbas plIyL [<«—

|weaJujs Juswbas puodas [<«—

| wed.3s JuawWbas 3siid |<—

V6T "'DId

US 9,307,260 B2

Sheet 23 of 59

Apr. 5, 2016

U.S. Patent

d 301S

vV 99lS <

_ WweaJls Juswbas Ypnod |<«— 55

| weaJls JUsWbas plIyL |«— iz

f"]

| weaJls Juswbas puodds |<«— [

...........

[weays Juswbas 1su1d |<— s
\. R a0k

([wes13s uswbes y3inod |<— o

| weaJls JusWbas plIyL [«—

m_m__m €

_Emmbm JUSWbas puodasg _A|

|| weaJ3s Juawbas 3siid |<—

d6T 'Ol

v I
G

U.S. Patent Apr. 5, 2016 Sheet 24 of 59 US 9,307,260 B2

FIG. 20

QL QP2 QP4 QP QP value

O >

51|0

A | > (oo B
51/0 Tsio Ty T o

T

mb_qp_delta,,! ' mb_qgp_delta,,

e/fQ\

mb_qp_deltas,

mb_qp_delta,,

US 9,307,260 B2

Sheet 25 of 59

Apr. 5, 2016

U.S. Patent

NNmm_

pu3

suoieLeA 4O indinp _

A

ommm_ SuoljeHeA dO 9p0d-9Y |

A

>

SUOIIRLIBA 4D paie|nwiNdie 1959y
suolieLIRA 4O 9oe|day
sweanys Juawbas Jo suojjeleA dO 2eINWNY | oy

BIES

A

SOA

¢3Ull g Jo buluuibag
91¢S X

A

A

>

swieauys udwbas
pJIy3 pue ‘puodas
1s414 JO suoneueA
d0O 21e|nwindyY

swieaJys juawbas
yprnoJ pue ‘puolas
18414 JO suoelieA

d0O a1e|nwindoy

sweaJls juswbas
yunoy pue ‘paiyy
18414 JO suopeLeA

d0O a1e|nwindoy

sweauls juswbas

yxnoj pue ‘paiyl
'PU033S JO SUoIRLIBA
d0 21e|hwinay

vIES A ZIES A 0T€S A 80€S A
weans weans weans
juawbas Juswbas Juawbas
yxinod payL puodes 90¢S

weaJs uawbas 3sdi4

T u0l1euIsap ndino weal]

[suonenea 4O psienwindde |2 Josoy

¥0EsS

00¢es

T¢ 'Ol

SOA

9211 JO Bujuuibag ==
z0€s

co“_moa >20|goJdew ajended|

Buissanoud

aW Heis

U.S. Patent

D

HD

HD

HD

HD

Apr. 5,2016 Sheet 26 of 59 US 9,307,260 B2
FIG. 22A
First decoding|—~120
engine
g Second decoding|,~120
engine
/\(\ Third decoding|,~120
engine
4k2k Fourth decoding|, 120
engine
FIG. 22B
First decoding|—120
engine
D s Second decoding| —120
/\(\ engine
D Third decoding|—~120
engine
Fourth decoding| —~120
engine
. 22C
V)
== First decoding| ~120
NN “lengine
" 4 Second decoding| 120
NN ~lengine
) Third decoding| 120
/\Cf'\ ~| engine
Fourth decoding| 120
%\ “lengine

US 9,307,260 B2

Sheet 27 of 59

Apr. 5, 2016

U.S. Patent

2ST J24NQq Wea}s Juswbas Y- \o#.m

omﬁ/ ZST Joyng wesns Jusawbas 1s1i /
AJowasp ——
. . ' _ TST
€51~ L \
—JAlowSW swelq _ d _ Jayng weansg
AAAA e LS A
< [= Aiassas
ODIASP : oUIbUS < weans g
'] buipodap Yi-N !
Aeidsia . P ﬂm I UH/ONN
1 _ wc&cm%
m_mc__uSm_u puCoag| M/
— % ,—02C
: sulbua <
+ | Buipooop 3514 ~_ 07z uoew.Iojul A
AR L |0J3U0D UOIIEO||Y
orT—~ 3Iun (04300 J3podaq
LoIeWI0}U] UoRoa[ag [UoeIusWbes
weans
A
~ uol3eWIoUl O

€Z 'OlId

US 9,307,260 B2

Sheet 28 of 59

Apr. 5, 2016

U.S. Patent

qzer PSSy : (8ET) G8ETN oo grgvo:
J L o wn | | e R R A
. : ! UoIMaSUl | Buipooap JaAg] ! \ \
B D “ ! WNied eyop gd | | 320[qoJoR Y "
)“ “ 1 CO_UUUHU_U \\“\ 1
L || 2 |Aepunog qoeT ! !
<o | | Juswboag ' yun '
; i ! < _ BuIpo2ap Jake “
i P : ' eep 05| !
ZST Joung <l : ' /n_mm._” QmmH_ -------W.--._-- '
wea.ns ~1 ¥ e A nun'blissssoud 83ep ERIY un un i~
N ' i o R I N Ry A= ey ! uoRO9Ie
EwEm\mm ol w_w_h <o |} S I N (beT) aveT— [eAOWID. mcow /
vl L L [iewd]) [Bez) esez, B9ET~ IO eanl | v
<) ol DI N wun | ! wun|i
...... e ¢ : un uoILBsSUl] Buipodap JaAe| '
< 1T " UNied e3op dd | | ;
...... il <o |] uonpa39p “ 22019008 ! | | #e4nq
m - ' — Aiepunoq ! T <€ < Jweans
< N] ' | uswbas > Hun ! Hun ,
...... <«l< " uonesyipow e Buipodap Jake| _
| >3 ! i <] urudpg " eyep 2011 [T\
< 100 HEE N L I Vreser
B N A Jlegg 1 24€2 un Blissa00id eiep 3Dus | woet~
T (PET) BrET~ —
S ENEEREENERR Juswabeuew
cbummr_ IS €T Buissano.d
Sdd ‘sdS—~ A A
1un uonejuawbas weans

o€z UOIJRWLIOJUI [0JIU0D UDIRIO|lY ¢
UOIIEWIC Ul 2P0

¢ 'OlId

US 9,307,260 B2

Sheet 29 of 59

Apr. 5, 2016

U.S. Patent

[[weau3s 3uswbas ypnod |<—|:

| weaJ}s Jusawbas piyl |«—

|weaJ3s Juswbas puodds |«—

| weaJ3s Juswbas 114 |<«— .

[(wes13s Juswbas ypnod |<—|;

| weaJ}s Jusawbas pliyl |<«— [

_Emmbm JuUSWbas puodas _A|

| weau3s juowbas isii|<—

Q7 uonelea

dO paienwinioy

91

Sl

1d

€1

al

T

¥o0|qoJoew paddis

STARI)E

L

320|goJoew |eWwIoN

US 9,307,260 B2

Sheet 30 of 59

Apr. 5, 2016

U.S. Patent

B6CT eqeT
Hun
qun uonoeIIXe |l un
uo10239p Jun unJt dps Buipooap
AJepunoq 3un OCn__UOU l«—Juoneluswbos fe— J9Ae|
juswbag unt dmis unJt dpys elep a2l|s
121! TOT 09T
JlUn uonesIpow unJd dMs
e/ge¢
9¢ 'Ol

US 9,307,260 B2

Sheet 31 of 59

Apr. 5, 2016

U.S. Patent

A pu3)

SA

SOA

¢0 = unidpjs qu

>

una—ds—quw ndino _

¥1S

A

Mau se uojpiod ey puodss 39S

unJ—diis_qu Spod-3y _

una—dpis qui 212S

02esS— A

una—dpjsTqu se uojuod Jjey 31sdi Indino _

¢S¢S

A

unt—dps T qu se uoniod Jey isay muou-mm_

05¢5— A

diW 1e uoiod jjey puodas pue uoipiod
Jjey 3sdiy 03Ul und—dpis qui Juswbas

Aepunoq auj|

91¢sS

A

SOA
90¢sS

cAdepunoq aul| g buiyoeal

A

ON

unJ—dps qu

uonisod »20[qoldew a3en3jed

¥0¢S

\

> SO

LC "OI4

US 9,307,260 B2

Sheet 32 of 59

Apr. 5, 2016

U.S. Patent

pul

|
| vonewuoyui gy Inding |

~1
| uonew.ojul g Inding |

9GS — A 0SES \

swieaJys juswbas Jo
SUOIIRIIBA 0 Paje|NWINJDe 1959y

Hges— A

swesJ]s Juswbhas Jo suopeliea
dO pa3e|nwinaoe ndino pue apo)

ON

7665 —

A

SOA

¢SUll diN JO
9T€sS W,

A

A

-

swieauls uswbas
pJIYy3 pue ‘puodss
1s841) JO suopeueA
d0O 23e|NWINDY

sweauls Juswbas
YHINOJ pue ‘puoaas
1s414 JO suoneLeA

d0 a1eInwinday

swiea.J1s juawbas
yHnoy pue “pJiy3
15414 JO suonRelIeA
d0 23eInwndoy

sweaus Juswbas
yunoyj pue ‘pJiys
‘puUoD3s JO suoIRLIBA
dO 93e|NWINIDY

wieauys Juswbas 35414

vIES A ZI€S A 0TES A 80€S A
weaJls weadys weauls
Juswbas Juawbas Jjuawbas e Uojeu3sap Indino weal]
yunod PJIYL puodog

[suoneuea gO pazeinwindde e 1esey

POES

00€S _co_u_mog >20]qoloew 23e|ndje)|

8¢ 'OIAd

US 9,307,260 B2

Sheet 33 of 59

Apr. 5, 2016

U.S. Patent

£9¢ Joyng weans [eryed -y 00€
omm \ €9¢ Jayng weans |erped jsii4 \
AJOLIDW A \
2 Z9€ Ja1nq weauls EwEmmm/ \H@m
_ \] . _ _ & AJowaw awe.d
<7 AAAA J

_ i e ok et - ejep

0ce ! " 5 SUIbUS | obew jeulbLIQ
o i] BUIpoOUS YI-N [
[Fl | oee! Lk
1 " ree <]
< 1N | —)
! 0z 11 T
weaus ug |buxerdninig | " SUBU) ¢
! -] buipoous puodes|
< | oze—f 1 !
| _ 2uIbua |
uoiewojul ! : : <
M |0.3UOD UOREIO|Y A 0ze—s m.m_.u OOLS mu__.“_m 2

2IUN [013U0D
uopeulquod| 4-0t€
uoneLLIoul weaus Japooug
UuoipP9Rs A
uonewojul °9poN ¢ o._”m\

6¢ 'Ol

U.S. Patent Apr. 5, 2016 Sheet 34 of 59 US 9,307,260 B2

FIG. 30A

MB line

!

First encoding engine

Second encoding engine

Third encoding engine

Fourth encoding engine

First encoding engine

Second encoding engine

Third encoding engine

Fourth encoding engine

First encoding engine

Second encoding engine

Already coded macroblock

Currently coded macroblock

US 9,307,260 B2

Sheet 35 of 59

Apr. 5, 2016

U.S. Patent

Jied aull g

20|qoJoew papod Ajpusdin)

320|qoJoew papod Apeady

oull dIN —

Ul dIN ™

> 2uIbud Buipoouad 3sJ14

> du1bud buipodua yiino4

L du1bud buipooua pJiyl

L 9uIbua bulpooud puodas

L 2uIbua bulpooud 3s.14

d0¢ 'Ol

US 9,307,260 B2

Sheet 36 of 59

Apr. 5, 2016

U.S. Patent

uonew.ojul oS
au aul oul ol > .
DUD-301[S S QU d [[Ul] AN | € 2Ull N | 2 Ul dIN| T 2Ul]l dIN | O SUl| I 0IIS
29—~
uoneuw.ojul

o0 pu=-321|S £ o
uoijew.iojul Z 2ull di

mu.m..\ pua-221|S .
. CO_HME_O.._C_ m WC__ m_)_ H mC__ m_\/_

239 pua-221|S . .
_Juoneuw.oyul v aul g | o suy gw

oA puU2-221|S . .

T€ 'OId

weaJys |eiHed (8)

weaJ1s Juswbas yunod (p)

weaJdis Juawbas paiyl (2)

weaJys Juswbas puodss (q)

wesJs Juswbas 1s414 (e)

US 9,307,260 B2

Sheet 37 of 59

Apr. 5, 2016

U.S. Patent

_ weaJ3s Juswbas yunod

weauys juawbas paiyl

|weans Juswbas puodss

¢ 24NPld T 24nld 0 =24N12ld
r A hd A N\ A N\
P OOIS | €90IS | ¢901S | T 93lS 0 °@2IIS
P 20IS | €90IS | 2920IS | T IS 0 @2IIS _
P 20IS | €90IS | 2920IS | T IS 0 @2IIS
P OOIS | €90IS | ¢901S | T 93lS 0 °@2IIS _
Ve "'OlId

weadls Juswbas 3sa14

US 9,307,260 B2

Sheet 38 of 59

Apr. 5, 2016

U.S. Patent

W <«——
201 201 =]

b 99115 @» Z 991IS T IS T1Sdd .
| caols [zSdd § RS 0Sdd| sd$
| | = ;
L 'l ¥ ' LA
Vv Ly Ly Ly »
S €1 2 n 0

dce ‘OId

JIUN UOI3_UIqUIOD
WeaJ}s puodas

JIUN UOI3_UIqUIOD
wesa.1s 1si4

J1UN |0J43U0d
uoleuIquIod Weaas

U.S. Patent Apr. 5, 2016 Sheet 39 of 59 US 9,307,260 B2

FIG. 33
SPS PPS1
PPSO Slice 1
Slice O Slice 2
PPS2 Slice 4
Slice 3
\ \

First partial stream buffer Second partial stream buffer

US 9,307,260 B2

Sheet 40 of 59

Apr. 5, 2016

U.S. Patent

. uonewlojul Jequinu jiun yN

:UOIleWIOoUl J3JJNg weaJls |ended

o uoneuwlolul lsquinu jiun yN

:UOIIRWIOUI J3JJNg weaJls |ennded

o uonjewdojul lsquinu jiun N

:UoIeWIojUl J3Ng WeaJls |elued

. uonjewdolul Joquinu jiun yN

N | N

:UoI3ewW.ojuUl Ja44Ng weaJls |eljed

. uonewlojul Jequinu jiun yN

1 UOI3eWIOJUl J24NG WedJls |eljed

v "OId

uoljewuoljul Uuolloo|as ¥ 9dl|sS
uoneuwlojul uolldajas ¢ adl|s
uoljewllojul uollda|as ¢ 9dl|s
uoljewdolul uolld9jas T 92dl|S

UOI3eW.IOJUI UDIIDI3S O 301|S

US 9,307,260 B2

Sheet 41 of 59

Apr. 5, 2016

U.S. Patent

£qe

Jsyng
weaJls

lerued

qzes m (8€E) UBEEN oo, avevo .,
J m S wnf | nun
! uonedyipolller] sisAjeue Jsie)
! wnf<] eppddl | pojqosoen
—{ uonoaiep .t
! JArepunog n_wmm m Jun
1 [uewbas| 1 sishjeue Jshe|
' ol eiep 20
" /Qmmm Dmmm_ ||||| w.l_nlv ||_|m||
TIPS : Jun' BUISS330.4d ©I8p 9IS
T N GrEE
uoruesuy| | % (gcc) egee . B9EE~ AW,
83 | 5 wun| ! Hun
o ny uoneoyipolle sisAjeue usAe)
" b Wwni<t eyepdd| | wojgosen
<< 1. uonpasp !
' 11 JAepunoq :
" " wn| ! jun
i r JaWbaS] uonesyipoLl leg SISAjeue ushe|
e n < una dpig| elep 90I|S
.11 eege” BLEET, un wo_.m.m.w.u.oum-mu”m._mwu__m_

JlUN UOIJ3SUl JSpesH |- cee

¢S¢ Jalnq
weans
uswbasg

A

A

A

ecee 1€€
/!

jun
Jun uonoaI2p
ddd yeis

S

woee “\

3un

3UN UonREUIqUOD WeaJls

_| Juswoabeuew

Buissano.d

/

/

A

omm\ UOI}eWIOU| [0JIU0D UOIEIO|Y O
UOoIBW.IOUI SPOR

S¢ 'DI4

US 9,307,260 B2

Sheet 42 of 59

Apr. 5,2016

U.S. Patent

[(wea13s Juswbes ypnog | <—|;

| weaJ3s Juswbas piiyl | <—

|weaJ}s Juswbas puodas | «—:

[weasys Juswbas 1si14] <—

[Wesis 3uswibes yinod| <—|:

| weauys Juswbes paiyL| <—I:

_Emmbm JudwWwbas _ucoumm_ <

[wes13s Juswbes 35iid] <— |

Mo0|qoJoew paddis

9¢ 'OIAd

\ ...__

X20|qoJoeWw |BeWLION

US 9,307,260 B2

Sheet 43 of 59

Apr. 5,2016

U.S. Patent

| wes.3s Juswbas ynod | <—

| WeaJls JusWbas plIYL | <—

|weaJls Juswbas puodas | «—

| weaJ3s Juswbas 154 | <

| weai3s Juswbas yinod | <—

| weaJls JusWbas plIyL | <—

_Emmbm Juswbas puodasg _ -

[weaus juawbas 3sii| <—

V.LE "DId

US 9,307,260 B2

Sheet 44 of 59

Apr. 5,2016

U.S. Patent

g 301S

V 9IS

x_ WeaJ3s JUaWbas ypnod [<—

| wealjs Juswbas pJlyl |<—

_Emmbm juawbas _ucoumm_A|

[wesi3s Juswbas 3siid]<—

x_ WeaJ3s JUsWHas ypnod |<—

| wealjs Juswbas pJlyl |<—

_Emmbm JudWbas _ucoumm_A|

| [weaxns juswibas 3suig|<— [

d/.¢ 'Ol

US 9,307,260 B2

Sheet 45 of 59

Apr. 5, 2016

U.S. Patent

209€ eQo¢
\ ~
AJOW
Z9¢€ 1944hq weans .EmEmwm/ \Hmm
| P & AJowsw swe.y
AANAA J
oo
; SuIbud |
1 BUIPOIUD Y3-N | 1)
] ﬁ_V_ - L
0ce '
' <
i 0ze— 1 ,
un ' subua] |
- | i buiposua puodas| |
< uoneuIquIod oze— T =
weaJls g weas _ oEaE
A 1 BuIpodus 15414 ﬂ_
0ZEA T K-
J9podug
uonew.oyul apop O BOTE
V8¢ 'Ol

eiep
abew [euIblLIQ

U.S. Patent

Apr. 5, 2016 Sheet 46 of 59

FIG. 38B

530

Generate N segment streams

l sn

Execute combination processing
for each processing target area

End

US 9,307,260 B2

U.S. Patent Apr. 5, 2016 Sheet 47 of 59 US 9,307,260 B2

FIG. 39

101a

U.S. Patent Apr. 5, 2016 Sheet 48 of 59 US 9,307,260 B2

FIG. 40
11 13
o -
First Second
segmentation >+ segmentation
control unit control unit
. . |stream Decoding] |
Blt I\Se i Unit .
—>segmentation \1\
stream ' unit 1~ 14
i Decoding| :
! D12 unit \1\
i . . i 14
| [Stream i
>-segmentation Decoding] | S
| unit unit :\
LT \— (AR sl
12
FIG. 41

S50
/J

Designate processing target area

551

Execute stream segmentation processing
on M processing target areas in parallel

/852

Select N segment streams

/553

Decode N segment streams in parallel

\
End

U.S. Patent Apr. 5, 2016 Sheet 49 of 59 US 9,307,260 B2

FIG. 42
22 24
pad o
First combination Second combination
control unit > control unit

T

Stream

combination
unit

23

- 23
"

Stream

unit

combinationrf—>

Multiplexing] Bit stream
unit ——>

U.S. Patent Apr. 5, 2016 Sheet 50 of 59

US 9,307,260 B2

FIG. 43
(start >
S60
Y ~
Generate N segment streams
561
Y o
Designate processing target area
S62
Y ~

Execute combination processing on
M processing target areas in parallel

b

Sequentially select combined
coding areas to be multiplexed

L

Multiplex M combined coding
areas in selection order

End

563

S64

U.S. Patent Apr. 5, 2016 Sheet 51 of 59 US 9,307,260 B2

FIG. 44

I
I
-

/ \/\/_5
Slice

Picture]

Macroblock \ I
|

US 9,307,260 B2

Sheet 52 of 59

Apr. 5, 2016

U.S. Patent

diN | 9N | 9N | 9N | 1oPesH
20l|S 20l|S IS |J4epesH
24n1d1d 24n1d1d 24n1d1d 24n01d JopesH
Q¥ 'OI4

(9)

(q)

(e)

US 9,307,260 B2

Sheet 53 of 59

Apr. 5, 2016

U.S. Patent

00€T
/

CTET
Alows|y

AdJowaw
swe.l

TTET |

Ja4ng weans

A

01T

<
20IABp Ae|dsiq

Y,

_mc_mcm Buipodaqj«

1
~
0zeT

9% 'Ol

L weas Jig

US 9,307,260 B2

Sheet 54 of 59

Apr. 5, 2016

U.S. Patent

Alowaw swe.

~
CTET

Y
Jun uonesuadwod|_ Jaun uonoipaud
uonow > pa1ybiam
mc_umawc GZET— 9CET
\.\,\,_ 199d >{ 3un uondIpald
pZET /7e1— 24nyoid-eJug _
<
srer— . e—
€CET

JlUN wJojsueuy

as1aAuT [€

Jun buipoosp
Adoujug

4%

<

I1ZET~ auibus Buipodaq

Ly "Dl

=
0ceT

US 9,307,260 B2

Sheet 55 of 59

Apr. 5, 2016

U.S. Patent

Ay
0¥8¢E

7

puo23s / sweldj 09

81 'Ol

09T¢

080T

-
d

puod23s/ swel) 0

US 9,307,260 B2

Sheet 56 of 59

Apr. 5,2016

U.S. Patent

00vT
/

OTETy NHmHJ HHmH/
Atowsi [Tiows
[sweld _ Jajjng wesns |«
A-AAA
-
< | SUIDUD |
221A9p Aeldsiq | 6uipoosp yi-N ees 1Ig
LLL _
| [¥44!
¢

_ mc_wcm

| buipoosp puooss

S~ 17bT
| subus |
buipoosap 3s4i
| P p 31sdid ./HN._V._“
19p023Qq
\
0cvT
61 'OId

U.S. Patent

Apr. 5, 2016 Sheet 57 of 59

FIG. 50A

US 9,307,260 B2

CO | s

T e

FIG. 50B

TN)
)

N

= <

US 9,307,260 B2

Sheet 58 of 59

Apr. 5, 2016

U.S. Patent

aulbus Bulposp YUNO «———— | <] i

suibus Bulpodsp pUIY] «——

sulbus BUIpOIdp PUOIDS «———

auibua bulpodap ISJI{ «———

1S 'Ol

o = N ™M

US 9,307,260 B2

Sheet 59 of 59

Apr. 5, 2016

U.S. Patent

00TT
/

om:/ mm:/ ZGTT J94nq weadls juswbas Hm://
AJoWwsp Alowsw " _ -
| SR " " <« Jajjng weans
AAAA A
"-.L----w-----------._
< _ SuIbuo < I
ao1ASp Ae|dsig Umc_nouw_u_f_-z . weaJas g
! L 0ZTT Y
I ———— jiun
“ uolzeyuawbas
mle m._.c_ucm] wess
+ | Bulpoosp puooas M“f \ A
K % i~ 0CTT OCTT
] auibua A
» |_Duipooap 3sdid N
e go-—-------- —0CTT
L A 1apooa
\\

OTTT uonewJojur spow O

¢S 'OlId

US 9,307,260 B2

1
IMAGE DECODING APPARATUS, IMAGE
DECODING METHOD, IMAGE CODING
APPARATUS, AND IMAGE CODING
METHOD

TECHNICAL FIELD

The present invention relates to an image decoding appa-
ratus and an image decoding method for decoding a bit stream
generated by coding image data, and an image coding appa-
ratus and an image coding method for generating a bit stream
by coding image data. The present invention particularly
relates to an image decoding apparatus and an image decod-
ing method for executing decoding in parallel, and an image
coding apparatus and an image coding method for executing
coding in parallel.

BACKGROUND ART

An image coding apparatus for coding a moving picture
segments each picture constituting the moving picture into
macroblocks, and codes the moving picture on a macroblock
basis. The image coding apparatus thus generates a bit stream
representing the coded moving picture.

FIG. 44 is a diagram showing a structure of a picture to be
coded.

The picture is segmented into macroblocks composed of
16x16 pixels, and coded. Here, a plurality of macroblocks
included in the picture constitute a slice, and a plurality of
slices constitute the picture. A structural unit of one row of
macroblocks horizontally arranged from a left end to a right
end of the picture is referred to as a macroblock line (MB
line).

FIG. 45 is a diagram showing a structure of a bit stream.

The bit stream is hierarchical and, as shown in FIG. 45(a),
includes a header and a plurality of pictures arranged in
coding order. The header includes, for example, a sequence
parameter set (SPS) referenced to for decoding a sequence
composed of the plurality of pictures. As shown in FIG. 45(b),
each of the coded pictures includes a header and a plurality of
slices. Likewise, as shown in FIG. 45(c), each of the slices
includes a header and a plurality of macroblocks (MBs). The
header at the beginning of the picture in FIG. 45(5) includes,
for example, a picture parameter set (PPS) referenced to for
decoding the picture.

FIG. 46 is a diagram showing a structure of a conventional
image decoding apparatus.

An image decoding apparatus 1300 includes a memory
1310 and a decoding engine 1320. The memory 1310
includes a stream buffer 1311 having an area for storing a bit
stream, and a frame memory 1312 having an area for storing
decoded image data outputted by the decoding engine 1320.
The image decoding apparatus 1300 obtains coded image
data such as macroblocks and pictures included in the bit
stream sequentially from the beginning side, and stores the
coded image data into the stream buffer 1311.

The decoding engine 1320 sequentially reads the coded
image data from the stream buffer 1311 in decoding order,
decodes the coded image data, and stores the decoded image
data generated by the decoding into the frame memory 1312.
The decoding engine 1320 decodes the coded image data with
reference to the decoded image data already stored in the
frame memory 1312.

The decoded image data stored in the frame memory 1312
is outputted to a display device in display order, and dis-
played.

20

25

40

45

50

2

FIG. 47 is a diagram showing a structure of the decoding
engine 1320.

The decoding engine 1320 includes an entropy decoding
unit 1321, an inverse transform unit 1322, an adder 1323, a
deblocking filter 1324, a motion compensation unit 1325, a
weighted prediction unit 1326, an intra-picture prediction
unit 1327, and a switch 1328.

The entropy decoding unit 1321 performs entropy decod-
ing on coded image data to generate quantized data indicating
quantized values, and outputs the quantized data to the
inverse transform unit 1322.

The inverse transform unit 1322 performs inverse quanti-
zation, inverse orthogonal transform, and the like on the quan-
tized data to transform the quantized data into difference
image data.

The adder 1323 generates decoded image data by adding
the difference image data outputted from the inverse trans-
form unit 1322 and predicted image data outputted from
either the weighted prediction unit 1326 or the intra-picture
prediction unit 1327 via the switch 1328.

The deblocking filter 1324 removes coding distortion
included in the decoded image data generated by the adder
1323, and stores the decoded image data without the coding
distortion into the frame memory 1312.

The motion compensation unit 1325 reads the decoded
image data stored in the frame memory 1312 and performs
motion compensation thereon to generate predicted image
data, and outputs the predicted image data to the weighted
prediction unit 1326.

The weighted prediction unit 1326 adds a weight to the
predicted image data outputted from the motion compensa-
tion unit 1325, and outputs the predicted image data to the
switch 1328.

The intra-picture prediction unit 1327 performs intra-pic-
ture prediction. In other words, the intra-picture prediction
unit 1327 performs intra-picture prediction using the decoded
image data generated by the adder 1323 to generate predicted
image data, and outputs the predicted image data to the switch
1328.

In the case where the difference image data outputted from
the inverse transform unit 1322 is generated by intra-picture
prediction, the switch 1328 outputs the predicted image data
that is outputted from the intra-picture prediction unit 1327,
to the adder 1323. In the other case where the difference
image data outputted from the inverse transform unit 1322 is
generated by inter-picture prediction, the switch 1328 outputs
the predicted image data that is outputted from the weighted
prediction unit 1326, to the adder 1323.

Recent years have seen increases in resolution and frame
rate of images. HD (High Definition) image coding and
decoding are currently implemented, but image coding and
decoding using higher resolutions and higher frame rates are
also expected. More specifically, moving pictures having a
so-called 4k2k resolution are under consideration for practi-
cal use.

FIG. 48 is an illustration of HD and 4k2k.

HD bit streams are distributed via terrestrial digital broad-
casting, BS digital broadcasting, and the like, where pictures
having a resolution of “1920x1080 pixels” are decoded and
displayed at a frame rate of 30 frames per second. 4k2k bit
streams are scheduled to be experimentally distributed via
high BS digital broadcasting from 2011, where pictures hav-
ing a resolution of “3840x2160 pixels” are decoded and dis-
played at a frame rate of 60 frames per second.

In short, a 4k2k bit stream has vertical and horizontal
resolutions two times those of an HD bit stream, and has a
frame rate two times that of the HD bit stream.

US 9,307,260 B2

3

Furthermore, coding and decoding of 8k4k images (7680x
4320 pixels) having vertical and horizontal resolutions two
times those of 4k2k images are expected to come under con-
sideration.

Such increases in resolution and frame rate of images
inevitably result in significant increases in processing load
that is placed on decoding engines of image decoding appa-
ratuses. For example, in the case of decoding a 4k2k bit
stream, the decoding engine 1320 of the image decoding
apparatus 1300 shown in FIG. 46 requires an operation fre-
quency of 1 GHz or more that is practically difficult to
achieve. This is why parallel decoding processing is being
considered.

FIG. 49 is a block diagram showing a structure of an image
decoding apparatus that executes parallel decoding process-
ing.

An image decoding apparatus 1400 includes the memory
1310 and a decoder 1420. The decoder 1420 includes N
decoding engines 1421 (for example, N=4) which function
similarly to the decoding engine 1320 shown in FIGS. 46 and
47. Each of the N decoding engines 1421 (first to N-th decod-
ing engine 1421) extracts a portion to be processed by the
decoding engine 1421 itself from a bit stream stored in the
stream buffer 1311, decodes the extracted portion, and out-
puts it to the frame memory 1312.

Each of FIGS. 50A and 50B is an illustration of an example
of parallel decoding processing.

As an example, the image decoding apparatus 1400 obtains
a bit stream composed of four area bit streams, and stores the
obtained bit stream in the stream buffer 1311. Each of the four
area bit streams is an independent stream and, as shown in
FIG. 50A, represents a moving picture in one of four areas
generated by dividing one picture into four equal parts. Each
of the four decoding engines 1421 (for example, N=4) in the
image decoding apparatus 1400 extracts the area bit stream to
be processed by the decoding engine 1421 itself from the
stream buffer 1311, decodes the extracted area bit stream, and
causes the moving picture to be displayed in the area corre-
sponding to the area bit stream.

As another example, the image decoding apparatus 1400
obtains a bit stream including pictures each composed of four
slices, and stores the obtained bit stream in the stream buffer
1311. The four slices are generated by dividing one picture
into four equal parts in the vertical direction, as shown in FIG.
50B. Each of the four decoding engines 1421 (for example,
N=4) in the image decoding apparatus 1400 extracts the slice
to be processed by the decoding engine 1421 itself from the
stream buffer 1311, decodes the extracted slice, and causes
the moving picture to be displayed in the area corresponding
to the slice.

However, generating one bit stream as four area bit streams
and decoding the four area bit streams as shown in FIG. 50A
requires restrictions on moving picture coding methods. That
is, the whole system needs to be changed, which incurs a
heavy load.

Likewise, dividing one picture into four equal parts and
coding and decoding the four parts as slices as shown in FIG.
50B also requires restrictions on moving picture coding
methods.

In detail, in MPEG-2 (Moving Picture Experts Group
phase 2) which is a moving picture coding and decoding
standard, slices are always separated at boundaries of MB
lines. In H.264/AVC, the sizes and positions of slices set in
pictures are arbitrary, with there being a possibility that only
one slice is set in one picture. Accordingly, uniformly setting
the positions and sizes of slices as shown in FIG. 50B neces-

10

15

20

25

30

35

40

45

50

55

60

65

4

sitates changes in the whole system including an operational
standard for digital broadcasting systems, which incurs a
heavy load.

This leads to study on an image decoding apparatus that
performs parallel decoding on a bit stream representing a
moving picture coded according to the operational standard,
with no need to restrict or change the operational standard.
For example, this image decoding apparatus segments each
picture in a bit stream generated according to MPEG-2 into
slices, and performs parallel decoding processing on the
slices.

Such an image decoding apparatus, however, cannot
appropriately execute parallel decoding processing. That is,
since the image decoding apparatus segments each picture
into slices and decodes these slices in parallel, the image
decoding apparatus cannot appropriately execute parallel
decoding processing on a bit stream, such as an H.264/AVC
bit stream, where the sizes and positions of slices are arbi-
trarily set. In other words, unequal loads are placed on a
plurality of decoding engines included in the image decoding
apparatus, making it impossible to achieve decoding that
effectively utilizes parallel processing. For example, in the
case where one picture is composed of one slice, the picture
cannot be segmented, and one decoding engine is required to
decode the whole picture.

In view of'this, there is proposed an image decoding appa-
ratus that performs variable length decoding on a bit stream
generated according to H.264/AVC, segments each picture
obtained by the variable length decoding into MB lines, and
decodes the MB lines in parallel (for example, see Patent
Literature (PTL) 1).

FIG. 51 is anillustration of decoding processing performed
by the image decoding apparatus in Patent Literature 1.

In this image decoding apparatus, a first decoding engine
decodes the Oth MB line in a picture, a second decoding
engine decodes the first MB line in the picture, and a third
decoding engine decodes the second MB line in the picture.

Each decoding engine sequentially decodes macroblocks
from a left end to a right end of the corresponding MB line. In
macroblock decoding, there is a dependency between a
decoding target macroblock and macroblocks located at left,
left above, above, and right above positions of the decoding
target macroblock. That is, when decoding the macroblock,
each decoding engine needs information obtained by decod-
ing the left, left above, above, and right above macroblocks of
the decoding target macroblock. Hence, each decoding
engine starts decoding the decoding target macroblock, after
the decoding of these macroblocks is completed. In the case
where any of the left, left above, above, and right above
macroblocks is not present, each decoding engine starts
decoding the decoding target macroblock after the decoding
of the other macroblocks is completed. Thus, the image
decoding apparatus executes parallel decoding on macrob-
locks that are located two macroblocks apart horizontally and
one macroblock apart vertically from each other.

However, there is an instance where the image decoding
apparatus in Patent Literature 1 segments a slice included in
an H.264/AVC picture. In such a case, each decoding engine
needs to have a function of appropriately recognizing a seg-
ment of the slice, as the slice. This complicates the structure
of'the image decoding apparatus.

In view of'this, there is proposed an image decoding appa-
ratus that appropriately executes parallel decoding process-
ing by a simple structure (for example, see Patent Literature
2).

FIG. 52 is a block diagram showing a structure of the image
decoding apparatus in Patent Literature 2.

US 9,307,260 B2

5

An image decoding apparatus 1100 in Patent Literature 2
includes a memory 1150 including a stream buffer 1151, a
segment stream buffer 1152, and a frame memory 1153, and
a decoder 1110 including a stream segmentation unit 1130
and N decoding engines 1120. The stream segmentation unit
1130 segments, for each coded picture included in a bit
stream stored in the stream buffer 1151, the coded picture into
a plurality of macroblock lines, and assigns each of the plu-
rality of macroblock lines to a portion of a corresponding one
of' N segment streams to be generated (N is an integer equal to
or greater than 2), thereby generating the N segment streams.
The N decoding engines 1120 obtain the N segment streams
from the stream segmentation unit 1130 via the segment
stream buffer 1152, and decode the N segment streams in
parallel. Moreover, in the case where, when generating the N
segment streams, a slice included in the coded picture is
segmented into a plurality of slice portions and assigned to a
plurality of segment streams, the stream segmentation unit
1130 reconstructs, for each segment stream, a slice portion
group made up of one or more slice portions assigned to the
segment stream, as a new slice.

Thus, a coded picture is segmented into a plurality of
macroblock lines, and each of the plurality of macroblock
lines is assigned to and decoded by a corresponding one of the
N decoding engines 1120 as a portion of a segment stream.
This enables the N decoding engines 1120 to equally share the
load of decoding processing, with it being possible to appro-
priately execute parallel decoding processing. For example,
even in the case where an H.264/AVC coded picture is com-
posed of one slice, the coded picture is segmented into a
plurality of macroblock lines, so that the load of decoding the
slice is not placed on one decoding engine 1120 but equally
shared by the N decoding engines 1120.

When a coded picture is segmented into a plurality of
macroblock lines, there is a possibility that a slice extending
over a plurality of macroblock lines is segmented into a plu-
rality of'slice portions and these slice portions are assigned to
different segment streams. In this case, the whole slice in the
coded picture is not included in one segment stream. Instead,
a slice portion group made up of one or more slice portions
which are segments of the slice is included in each segment
stream. There is also a possibility that such a slice portion
group does not have a header indicating the beginning of the
slice portion group and end information indicating the end of
the slice portion group.

Accordingly, the image decoding apparatus 1100 in Patent
Literature 2 reconstructs the slice portion group as a new
slice. As a result, the decoding engine 1120 that decodes the
segment stream including the slice portion group can easily
recognize the slice portion group as a new slice and appro-
priately decode the slice portion group, without requiring
special processing for recognizing the slice portion group and
appropriately decoding the slice portion group. That is, in the
image decoding apparatus 1100 in Patent Literature 2, there is
no need to provide each of the N decoding engines 1120 with
a function or a structure for such special processing. Since
conventional decoding circuits can be used as the decoding
engines 1120 for decoding the segment streams, the whole
structure of the image decoding apparatus can be simplified.

The image decoding apparatus in Patent Literature 1 also
has a problem that its performance improvement is limited,
because the image decoding apparatus is capable of parallel
decoding processing of macroblocks but incapable of parallel
decoding processing of variable length codes.

In view of this, there is also proposed an image decoding
apparatus that performs parallel decoding processing of vari-
able length codes (for example, see Patent Literature 3).

25

30

40

45

50

6

The image decoding apparatus in Patent Literature 3 per-
forms variable length decoding processing on a plurality of
pictures or slices included in a bit stream, and stores interme-
diate data obtained by the variable length decoding process-
ing in an intermediate data buffer. The image decoding appa-
ratus extracts each picture from the intermediate data stored
in the intermediate data buffer, and performs parallel decod-
ing processing on the picture on an MB line basis using a
plurality of image decoding processing units.

CITATION LIST
Patent Literature

[PTL 1]

Japanese Unexamined Patent Application Publication No.
2006-129284

[PTL 2]

International Patent Application Publication No. 2010/
041472

[PTL 3]

Japanese Unexamined Patent Application Publication No.
2008-67026

SUMMARY OF INVENTION
Technical Problem

However, the image decoding apparatus 1100 in Patent
Literature 2 has a problem that a sufficiently high decoding
processing speed cannot be attained. In detail, in the case
where the bit stream has a large amount of data, the number of
decoding engines 1120 can be increased to increase the num-
ber of operations performed in parallel, thereby increasing the
processing speed. Regarding the stream segmentation unit
1130, however, the number of stream segmentation units
cannot be increased, and so the processing speed cannot be
increased.

To overcome this, the image decoding apparatus 1100 in
Patent Literature 2 may perform the generation of N segment
streams on a plurality of pictures or slices included in the bit
stream in parallel, as in the image decoding apparatus in
Patent Literature 3.

In the case of performing the generation of N segment
streams in parallel, however, the stream segmentation unit
1130 needs to have processing and a structure for enabling the
N decoding engines 1120 to recognize the segment streams to
be decoded in parallel. Besides, the N decoding engines 1120
need to have processing and a structure for recognizing the
segment streams to be decoded in parallel. Thus, processing
and structural changes are required of each component in the
image decoding apparatus 1100 in Patent Literature 2. This
complicates the whole structure of the image decoding appa-
ratus.

The present invention is developed in view of the problems
described above, and has an object of providing an image
decoding apparatus and an image decoding method for appro-
priately executing parallel decoding processing by a simple
structure. The present invention also has an object of provid-
ing an image coding apparatus and an image coding method
corresponding to the image decoding apparatus and the image
decoding method.

Solution to Problem

To achieve the stated object, an image decoding apparatus
according to one aspect of the present invention is an image

US 9,307,260 B2

7

decoding apparatus that decodes a bit stream generated by
coding image data, the image decoding apparatus including:
a first segmentation control unit that designates a processing
target area included in the bit stream; M stream segmentation
units that generate MxN segment streams by executing
stream segmentation processing in parallel on M processing
target areas designated by the first segmentation control unit,
each of the M stream segmentation units executing the stream
segmentation processing on a processing target area each
time the processing target area is designated to the stream
segmentation unit by the first segmentation control unit, the
stream segmentation processing being a process of generat-
ing at least a portion of N segment streams from the process-
ing target area, M being an integer equal to or greater than 2,
and N being an integer equal to or greater than 2; a second
segmentation control unit that, for each processing target area
designated by the first segmentation control unit, selects a
portion of each of at least one segment stream from the MxN
segment streams generated by the M stream segmentation
units, based on a position of the processing target area in the
bit stream; and N decoding units that, each time the portion of
each of the at least one segment stream is selected by the
second segmentation control unit, decode respective portions
of the N segment streams in parallel, the portions of the N
segment streams including the portion of each of the at least
one segment stream, wherein each of the M stream segmen-
tation units: executes the stream segmentation processing, by
segmenting the processing target area into a plurality of struc-
tural units and assigning each of the plurality of structural
units to a portion of a corresponding one of the N segment
streams to be generated; and in the case where aslice included
in the processing target area is segmented into a plurality of
slice portions and the plurality of slice portions are assigned
to a plurality of segment streams as a result of segmenting the
processing target area into the plurality of structural units,
reconstructs, for each of the plurality of segment streams, a
slice portion group made up of one or more slice portions
assigned to the segment stream, as a new slice.

According to this structure, the stream segmentation pro-
cessing is executed on the M processing target arcas (for
example, slices, pictures, or the like) in parallel. Therefore, in
the case where the bit stream has a large amount of data, the
number of decoding units can be increased to increase the
number of operations performed in parallel, thereby increas-
ing the processing speed. In addition, the number of stream
segmentation units can be increased, too, thereby increasing
the processing speed.

In the image decoding apparatus according to one aspect of
the present invention, the M processing target areas are des-
ignated to the M stream segmentation units. That is, the
stream segmentation processing of segmenting a processing
target area into a plurality of structural units (for example,
macroblock lines) is allocated to each of the M stream seg-
mentation units. This leads to a situation where the order ofa
plurality of processing target areas included in the bit stream
cannot be maintained in the MxN segment streams generated
by the M stream segmentation units, making it impossible to
simply decode the MxN segment streams. In view of this, in
the image decoding apparatus according to one aspect of the
present invention, for each designated processing target area,
a portion of each of at least one segment stream is selected
from the MxN segment streams generated by the M stream
segmentation units, based on the position of the processing
target area, i.e. the position in decoding order of the process-
ing target area in the bit stream. For example, when a portion
of each of the N segment streams corresponding to the pro-
cessing target area is stored in the same buffer (segment

10

15

20

25

30

35

40

45

50

55

60

65

8

stream buffer), this buffer is selected. The selected respective
portions of the N segment streams are then decoded in paral-
lel. As a result, the MxN segment streams can be decoded in
the correct order. Furthermore, in the image decoding appa-
ratus according to one aspect of the present invention, the
designation of the processing target areas and the selection of
the portions of the segment streams are performed in a cen-
tralized manner by a component other than the M stream
segmentation units and the N decoding units. No special
processing or structure is required of each component such as
the M stream segmentation units and the N decoding units, in
order to decode the MxN segment streams in the correct order
as mentioned above. Hence, parallel decoding processing can
be appropriately executed by a simple structure.

Moreover, each of the M stream segmentation units ana-
lyzes each piece of first header information included in the bit
stream and generates the N segment streams based on a result
of the analysis, irrespective of the designated processing tar-
get area.

According to this structure, each stream segmentation unit
analyzes each piece of first header information such as an
SPS, a PPS, and a slice header included in the bit stream, and
so is capable of appropriately generating the N segment
streams based on a reference relationship of the processing
target area and the first header information in the bit stream.

Moreover, one stream segmentation unit of the M stream
segmentation units generates N segment streams that include
second header information included in the bit stream, and all
other stream segmentation units of the M stream segmenta-
tion units each generate N segment streams that do not
include the second header information.

According to this structure, the second header information
such as an SPS and a PPS is included only in one segment
stream, and is not included in the other (N-1) segment
streams. As a result, the N decoding units can be kept from
processing a plurality of pieces of second header information
overlapping each other, with it being possible to prevent a
decrease in processing performance of the decoding units
caused by redundant decoding of the second header informa-
tion.

Moreover, the second segmentation control unit further
generates selection information indicating the selected por-
tion of the segment stream, and outputs the generated selec-
tion information to each of the N decoding units, and the N
decoding units decode the portions of the N segment streams
indicated by the selection information outputted from the
second segmentation control unit, in parallel.

According to this structure, the N decoding units can
decode the respective portions of the N segment streams in
parallel in the correct order using the selection information.

Moreover, the second segmentation control unit outputs
the selection information including a data size of the selected
portion of the segment stream, to each of the N decoding
units, and the N decoding units specify the portions of the N
segment streams based on the data size included in the selec-
tion information outputted from the second segmentation
control unit, and decode the specified portions in parallel. For
example, the second segmentation control unit outputs the
selection information including, as the data size, the number
of'bits or the number of data structural units constituting each
of'the N segment streams.

According to this structure, the N decoding units can
appropriately recognize the portions to be decoded in parallel
respectively from the N segment streams, and decode the
recognized portions. Besides, in the case where the selection

US 9,307,260 B2

9

information indicates the number of data structural units (for
example, NAL units in H.264/AVC), the selection informa-
tion can be simplified.

Moreover, the first segmentation control unit further:
judges, for each of the M stream segmentation units, whether
or not the stream segmentation processing executed by the
stream segmentation unit on the designated processing target
area is completed; and in the case of judging that the stream
segmentation processing is completed, designates a new pro-
cessing target area preferentially to the stream segmentation
unit completing the stream segmentation processing.

According to this structure, when one stream segmentation
unit completes the stream segmentation processing of one
processing target area, the stream segmentation processing of
a new processing target area is assigned to the stream seg-
mentation unit. This enables the M stream segmentation units
to be equal in processing amount.

Moreover, the N decoding units include a first decoding
unitand a second decoding unit, and in the case where the first
decoding unit decodes a first slice portion included in a seg-
ment stream assigned to the first decoding unit from among
the N segment streams and the second decoding unit decodes
a second slice portion included in a segment stream assigned
to the second decoding unit from among the N segment
streams, the first slice portion and the second slice portion
being spatially adjacent to each other: the first decoding unit
starts decoding the first slice portion before the second decod-
ing unit starts decoding the second slice portion; and the
second decoding unit obtains, from the first decoding unit,
adjacency information generated as a result of the decoding of
the first slice portion by the first decoding unit, and decodes
the second slice portion using the adjacency information or
decodes the second slice portion without using the adjacency
information.

According to this structure, even in the case where the first
slice portion included in one segment stream and the second
slice portion included in another segment stream are sepa-
rately decoded by the first decoding unit and the second
decoding unit despite the first slice portion and the second
slice portion being adjacent to each other, the adjacency infor-
mation is provided from the first decoding unit to the second
decoding unit, so that the second decoding unit can appropri-
ately decode the second slice portion included in the other
segment stream using the adjacency information as neces-
sary.

Moreover, the first segmentation control unit designates, as
the processing target area, a slice, a picture, or a picture group
made up of a plurality of pictures in the bit stream.

According to this structure, in the case where a slice is
designated as the processing target area, the processing target
area, i.e. the stream segmentation processing, is allocated to
each of the M stream segmentation units with minimum
granularity. This eases the equalization in processing amount
of the M stream segmentation units. In the case where a
picture or a picture group is designated as the processing
target area, the processing target area, i.e. the stream segmen-
tation processing, is allocated to each of the M stream seg-
mentation units with relatively large granularity. This allevi-
ates the load of the designation of the processing target areas
and the selection ofthe N segment streams respectively on the
first and second segmentation control units.

Moreover, it is preferable that the n-th (n is an integer from
1 to N) decoding unit out of the N decoding units decodes the
n-th segment stream out of the N segment streams generated
by the stream segmentation unit. In other words, it is prefer-
able that the decoding unit decodes a portion of each of
segment streams sequentially selected from predetermined M

25

35

40

45

50

55

60

65

10

segment streams out of the MxN segment streams. As a result,
each of the N decoding units decodes M segment streams out
of'the MxN segment streams, by decoding a portion of each of
segment streams sequentially selected by the second segmen-
tation control unit. This enables each of the N decoding units
to decode only the segment streams assigned to the decoding
unit.

Moreover, the stream segmentation unit may perform the
stream segmentation processing only on the designated pro-
cessing target area, by skipping each processing target area
not designated by the first segmentation control unit. This
enables the stream segmentation unit to process only the
designated processing target area without performing com-
plex processing.

Moreover, the header information may be header informa-
tion in a layer equal to or higher than a picture layer. Accord-
ing to this structure, even in the case where the processing
target area is smaller than a picture, that is, even in the case
where the stream segmentation processing is allocated in
units smaller than a picture, the header information in the
layer equal to or higher than the picture layer is analyzed in all
stream segmentation units, so that each of the stream segmen-
tation units can appropriately generate the segment streams.

Moreover, an image coding apparatus according to one
aspect of the present invention is an image coding apparatus
that generates a bit stream by coding image data, the image
coding apparatus including: N coding units that generate N
segment streams by coding, for each picture included in the
image data, a plurality of structural units included in the
picture in parallel, N being an integer equal to or greater than
2; afirst combination control unit that designates a processing
target area included in the bit stream; M stream combination
units that execute combination processing in parallel on M
processing target areas designated by the first combination
control unit, the combination processing being a process of
combining partial areas that are respectively included in the N
segment streams and correspond to a processing target area
designated by the first combination control unit to generate a
combined coding area which is the processing target area, M
being an integer equal to or greater than 2; a second combi-
nation control unit that sequentially selects, from M com-
bined coding areas generated by the M stream combination
units, combined coding areas to be multiplexed, based on
positions of the M processing target areas in the bit stream, the
M processing target areas being designated by the first com-
bination control unit; and a multiplexing unit that generates
the bit stream by multiplexing the M combined coding areas
in order in which the combined coding areas are selected by
the second combination control unit, wherein each of the M
stream combination units: in the case where the partial areas
are composed of a plurality of coded structural units when
executing the combination processing, generates the com-
bined coding area by segmenting the partial areas into the
plurality of coded structural units and recombining the plu-
rality of coded structural units; and in the case where a slice
included in the image data is segmented into a plurality of
slice portions and coded and the plurality of coded slice
portions are assigned to the N segment streams when per-
forming the recombination, reconstructs a slice portion group
made up of the plurality of coded slice portions as a new slice
in the combined coding area.

According to this structure, the picture is segmented into a
plurality of structural units such as macroblock lines, and
each of the plurality of macroblock lines is assigned to and
coded by a corresponding one of the N coding units. This
enables the N coding units to equally share the load of coding
processing, with it being possible to appropriately execute

US 9,307,260 B2

11

parallel coding processing. For example, even in the case
where an H.264/AVC coded picture is composed of one slice,
the picture is segmented into a plurality of macroblock lines,
so that the load of coding the slice is not placed on one coding
unit but equally shared by the N coding units.

Besides, the combination processing (stream combination
processing) is allocated to the M stream combination units on
a processing target area basis according to the processing
target area designation by the first combination control unit.
Hence, the combination processing can be performed by the
M stream combination units in parallel.

When a picture is segmented into a plurality of macroblock
lines and coded, there is a possibility that a slice extending
over a plurality of macroblock lines is segmented into a plu-
rality of slice portions and these slice portions are sequen-
tially assigned to segment streams. That is, slice portions
which are segments of the slice are distributed in each seg-
ment stream. Such distributed slice portions are not in the
same order as in the image data. This being so, in the case
where there is a dependency between the plurality of consecu-
tive macroblock lines based on a predetermined code word,
the distributed slice portions cannot maintain the dependency.
In such a state, it is impossible to generate the bit stream
conforming to the corresponding coding scheme. Accord-
ingly, in the image coding apparatus according to one aspect
of'the present invention, the slice portion group, i.e. the group
of'the distributed slice portions, is reconstructed as a new slice
in the combination processing. In so doing, the combined
coding area (for example, a slice, a picture, or the like) includ-
ing the slice portion group can be generated in conformance
with the coding scheme.

Further, when the combination processing is allocated to
the M stream combination units on a processing target area
basis and performed by the M stream combination units in
parallel, the order of a plurality of processing target areas
included in the image data cannot be maintained in the M
combined coding areas (partial streams) generated by the
parallel combination processing. As a result, the M combined
coding areas cannot be multiplexed in the correct order.

In view of this, in the image coding apparatus according to
one aspect of the present invention, for each designated pro-
cessing target area, combined coding areas to be multiplexed
are sequentially selected from the M combined coding areas
generated by the M stream combination units, based on the
position of the processing target area, i.e. the position in
coding order of the processing target area in the bit stream.
The M combined coding areas are multiplexed in the order in
which the combined coding areas are selected. As a result, the
M combined coding areas can be multiplexed in the correct
order. Furthermore, in the image coding apparatus according
to one aspect of the present invention, the designation of the
processing target areas and the selection of the combined
coding areas to be multiplexed are performed in a centralized
manner by a component other than the M stream combination
units and the N coding units. No special processing or struc-
ture is required of each component such as the M stream
combination units and the N coding units, in order to multi-
plex the M combined coding areas in the correct order as
mentioned above. Hence, parallel coding processing can be
appropriately executed by a simple structure.

Moreover, the second combination control unit, each time
a combined coding area to be multiplexed is selected, further
generates selection information indicating the selected com-
bined coding area, and outputs the generated selection infor-
mation to the multiplexing unit, and the multiplexing unit,
each time the selection information is obtained from the sec-

10

15

20

25

30

35

40

45

50

55

60

65

12

ond combination control unit, multiplexes the combined cod-
ing area indicated by the selection information into the bit
stream.

According to this structure, the multiplexing unit can mul-
tiplex the M combined coding areas in the correct order using
the selection information.

Moreover, the second combination control unit outputs the
selection information including a data size of the selected
combined coding area, to the multiplexing unit, and the mul-
tiplexing unit multiplexes the combined coding area of the
data size included in the selection information, into the bit
stream.

According to this structure, in the case where the combined
coding areas are sequentially generated from the stream com-
bination unit by repeated processing target area designation
by the first combination control unit, the multiplexing unit
can appropriately recognize, from the generated combined
coding areas, the combined coding area to be multiplexed,
and multiplex the combined coding area.

For example, the second combination control unit outputs
the selection information including, as the data size, the num-
ber of bits or the number of data structural units constituting
the combined coding area. In the case where the selection
information indicates the number of data structural units (for
example, NAL units in H.264/AVC), the selection informa-
tion can be simplified.

Moreover, the first combination control unit further:
judges, for each of the M stream combination units, whether
or not the combination processing executed by the stream
combination unit is completed; and in the case of judging that
the combination processing is completed, designates a new
processing target area preferentially to the stream combina-
tion unit completing the combination processing.

According to this structure, new combination processing is
assigned to a stream combination unit that is not engaged in
combination processing. This enables the M stream combi-
nation units to be equal in processing amount.

Moreover, the N coding units include a first coding unit and
a second coding unit, and in the case where the first coding
unit codes a first structural unit assigned to the first coding
unit from among N structural units and the second coding unit
codes a second structural unit assigned to the second coding
unit from among the N structural units, the first structural unit
and the second structural unit being adjacent to each other in
the picture: the first coding unit starts coding the first struc-
tural unit before the second coding unit starts coding the
second structural unit; and the second coding unit obtains,
from the first coding unit, adjacency information generated
by the coding of'the first structural unit by the first coding unit,
and codes the second structural unit using the adjacency
information or codes the second structural unit without using
the adjacency information.

According to this structure, even in the case where the
processing target area is segmented into a plurality of struc-
tural units such as macroblock lines and the first and second
structural units are coded respectively by the first coding unit
and the second coding unit in parallel, the adjacency infor-
mation is provided from the first coding unit to the second
coding unit, so that the second coding unit can appropriately
code the second structural unit using the adjacency informa-
tion as necessary.

Moreover, the stream combination unit may perform the
combination processing only on a partial area corresponding
to the designated processing target area by skipping a partial
area included in each of the N segment streams and corre-
sponding to each processing target area not designated by the
first combination control unit. This enables the stream com-

US 9,307,260 B2

13

bination unit to process only the partial area corresponding to
the designated processing target area without performing
complex processing.

Moreover, the processing target area may be a slice.
According to this structure, the processing target area, i.e. the
combination processing, is allocated to each of the M stream
combination units with minimum granularity. This eases the
equalization in processing amount of the M stream combina-
tion units.

Moreover, the processing target area may be a picture or a
picture group made up of a plurality of pictures. According to
this structure, the processing target area, i.e. the combination
processing, is allocated to each of the M stream combination
units with relatively large granularity. This alleviates the load
of the designation of the processing target areas and the
selection of the combined coding areas respectively on the
first and second combination control units.

Note that the present invention can be realized not only as
the image decoding apparatus and the image coding appara-
tus, but also as methods or programs for the image decoding
apparatus and the image coding apparatus, recording media
on which the programs are stored, and integrated circuits.

Advantageous Effects of Invention

The image decoding apparatus and the image coding appa-
ratus according to the present invention respectively produce
advantageous effects of appropriately executing parallel
decoding processing and parallel coding processing by
simple structures.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram showing a structure of an image
decoding apparatus according to Embodiment 1 of the
present invention.

FIG. 2A is a diagram showing decoding order of a picture
that is not coded in MBAFF according to Embodiment 1 of
the present invention.

FIG. 2B is a diagram showing decoding order of a picture
that is coded in MBAFF according to Embodiment 1 of the
present invention.

FIG. 3 is an illustration of slice header insertion processing
according to Embodiment 1 of the present invention.

FIG. 4 is an illustration of MB address information update
processing according to Embodiment 1 of the present inven-
tion.

FIG. 5 is an illustration of slice-end processing according
to Embodiment 1 of the present invention.

FIG. 6A is a diagram showing a bit stream according to
Embodiment 1 of the present invention.

FIG. 6B is an illustration of a specific example of slice
allocation processing by a stream segmentation control unit
according to Embodiment 1 of the present invention.

FIG. 7 is a diagram showing states of segment stream
buffers in the case of performing slice allocation by the
stream segmentation control unit and stream segmentation
processing according to Embodiment 1 of the present inven-
tion.

FIG. 8 is a diagram showing an example of a format of
selection information in the case of performing slice alloca-
tion by the stream segmentation control unit and stream seg-
mentation processing according to Embodiment 1 of the
present invention.

FIG. 9 is a flowchart showing overall operations performed
by the image decoding apparatus according to Embodiment 1
of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 10 is a block diagram showing a structure of a stream
segmentation unit according to Embodiment 1 of the present
invention.

FIG. 11 is an illustration of operations performed by a slice
header insertion unit and a slice data processing unit accord-
ing to Embodiment 1 of the present invention.

FIG. 12 is a block diagram showing a structure of the slice
header insertion unit according to Embodiment 1 of the
present invention.

FIG. 13 is a diagram showing MB lines and slice headers
assigned to first to fourth areas in a segment stream buffer
according to Embodiment 1 of the present invention.

FIG. 14A is a diagram showing positions at which slice-
end information is provided according to Embodiment 1 of
the present invention.

FIG. 14B is a diagram showing positions at which slice-
end information is provided according to Embodiment 1 of
the present invention.

FIG. 15 is a flowchart showing operations performed by a
segment boundary detection unit according to Embodiment 1
of the present invention.

FIG. 16A is an illustration of MB skip run information
modification processing according to Embodiment 1 of the
present invention.

FIG. 16B is an illustration of MB skip run information
modification processing according to Embodiment 1 of the
present invention.

FIG. 17 is ablock diagram showing a structure of a skip run
modification unit according to Embodiment 1 of the present
invention.

FIG. 18 is a flowchart showing how the skip run modifica-
tion unit performs a modification operation on MB skip run
information according to Embodiment 1 of the present inven-
tion.

FIG. 19A is an illustration of QP variation modification
processing according to Embodiment 1 of the present inven-
tion.

FIG. 19B is an illustration of QP variation modification
processing according to Embodiment 1 of the present inven-
tion.

FIG. 20 is an illustration of accumulation of QP variations
according to Embodiment 1 of the present invention.

FIG. 21 is a flowchart showing how a QP delta modifica-
tion unit performs QP variation modification processing
according to Embodiment 1 of the present invention.

FIG. 22A is an illustration of high-resolution decoding
according to Embodiment 1 of the present invention.

FIG. 22B is an illustration of high-speed decoding accord-
ing to Embodiment 1 of the present invention.

FIG. 22C is an illustration of mufti-channel decoding
according to Embodiment 1 of the present invention.

FIG. 23 is ablock diagram showing a structure of an image
decoding apparatus according to Embodiment 2 of the
present invention.

FIG. 24 is a block diagram showing a structure of a stream
segmentation unit according to Embodiment 2 of the present
invention.

FIG. 25 is an illustration of MB skip run information modi-
fication processing and QP variation insertion processing
according to Embodiment 2 of the present invention.

FIG. 26 is ablock diagram showing a structure of a skip run
modification unit according to Embodiment 2 of the present
invention.

FIG. 27 is a flowchart showing how the skip run modifica-
tion unit performs MB skip run information modification
processing according to Embodiment 2 of the present inven-
tion.

US 9,307,260 B2

15

FIG. 28 is a flowchart showing how a QP delta insertion
unit performs accumulated QP variation insertion processing
according to Embodiment 2 of the present invention.

FIG. 29 is ablock diagram showing a structure of an image
coding apparatus according to Embodiment 3 of the present
invention.

FIG. 30A is a diagram showing coding order of a picture
that is not coded in MBAFF according to Embodiment 3 of
the present invention.

FIG. 30B is a diagram showing coding order of a picture
that is coded in MBAFF according to Embodiment 3 of the
present invention.

FIG. 31 is an illustration of slice header insertion process-
ing and slice-end processing according to Embodiment 3 of
the present invention.

FIG. 32A is a diagram showing segment streams according
to Embodiment 3 of the present invention.

FIG. 32B is an illustration of a specific example of slice
allocation processing by a stream combination control unit
according to Embodiment 3 of the present invention.

FIG. 33 is a diagram showing states of partial stream buft-
ers in the case of performing slice allocation by the stream
combination control unit and stream combination processing
according to Embodiment 3 of the present invention.

FIG. 34 is a diagram showing an example of a format of
selection information in the case of performing slice alloca-
tion by the stream combination control unit and stream com-
bination processing according to Embodiment 3 of the
present invention.

FIG. 35 is a block diagram showing a structure of a stream
combination unit according to Embodiment 3 of the present
invention.

FIG. 36 is an illustration of MB skip run information modi-
fication processing according to Embodiment 3 of the present
invention.

FIG. 37A is an illustration of QP variation modification
processing according to Embodiment 3 of the present inven-
tion.

FIG. 37B is an illustration of QP variation modification
processing according to Embodiment 3 of the present inven-
tion.

FIG. 38A is a block diagram showing a structure of an
image coding apparatus that includes only one stream com-
bination unit according to Embodiment 3 of the present
invention.

FIG. 38B is a flowchart showing an operation of the image
coding apparatus that includes only one stream combination
unit according to Embodiment 3 of the present invention.

FIG. 39 is a diagram showing an application example of an
image decoding apparatus and an image coding apparatus
according to the present invention.

FIG. 40 is a block diagram showing a minimum structure of
the image decoding apparatus according to the present inven-
tion.

FIG. 41 is a flowchart showing an image decoding method
by the image decoding apparatus according to the present
invention.

FIG. 42 is a block diagram showing a minimum structure of
the image coding apparatus according to the present inven-
tion.

FIG. 43 is a flowchart showing an image coding method by
the image coding apparatus according to the present inven-
tion.

FIG. 44 is a diagram showing a structure of a picture to be
coded.

FIG. 45 is a diagram showing a structure of a bit stream.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 46 is a diagram showing a structure of a conventional
image decoding apparatus.

FIG. 47 is a diagram showing a structure of a conventional
decoding engine.

FIG. 48 is an illustration of HD and 4k2k.

FIG. 49 is a block diagram showing a structure of an image
decoding apparatus that executes conventional parallel
decoding processing.

FIG. 50A is an illustration of exemplary conventional par-
allel decoding processing.

FIG. 50B is an illustration of exemplary conventional par-
allel decoding processing.

FIG. 51 is anillustration of decoding processing performed
by a conventional image decoding apparatus.

FIG. 52 is ablock diagram showing a structure of an image
decoding apparatus including a conventional stream segmen-
tation unit.

DESCRIPTION OF EMBODIMENTS

An image decoding apparatus and an image coding appa-
ratus according to embodiments of the present invention are
described below, with reference to drawings.

Embodiment 1

FIG. 1 is a block diagram showing a structure of an image
decoding apparatus according to Embodiment 1 of the
present invention.

An image decoding apparatus 100 according to this
embodiment is capable of appropriately executing parallel
decoding processing by a simple structure, and includes a
decoder 110 and a memory 150.

The memory 150 has areas for storing data inputted to the
decoder 110, intermediate data generated by the decoder 110,
and data eventually generated and outputted by the decoder
110.

In detail, the memory 150 includes a stream buffer 151, M
segment stream bufters (first to M-th segment stream buffers)
152, and a frame memory 153.

The stream buffer 151 stores a bit stream generated and
transmitted by an image coding apparatus. The M segment
stream buffers 152 store MxN segment streams generated by
the decoder 110 as the above-mentioned intermediate data.
Each segment stream buffer 152 has areas that are each
assigned to a different one of N decoding engines 120. The
frame memory 153 stores N segments of decoded image data
generated by the N decoding engines (decoding units) 120, as
the above-mentioned data eventually generated and output-
ted. The decoded image data stored in the frame memory 153
is read and displayed as a moving picture by a display device.

The decoder 110 reads the bit stream stored in the stream
buffer 151 in the memory 150 and decodes the bit stream, to
generate decoded image data. The decoder 110 stores the
decoded image data in the frame memory 153 in the memory
150. The decoder 110 includes M stream segmentation units
(first to M-th stream segmentation units) 130, a stream seg-
mentation control unit 140, and the N decoding engines (first
to N-th decoding engines) 120.

Each decoding engine 120 in this embodiment has a pro-
cessing capability of decoding HD images (1920x1088 pix-
els, 601) corresponding to two channels.

The stream segmentation control unit 140 obtains mode
information described later. According to the obtained mode
information, the stream segmentation control unit 140 noti-
fies each stream segmentation unit 130 of allocation control
information for allocating stream segmentation processing on

US 9,307,260 B2

17

a predetermined unit basis, in order to make the M stream
segmentation units 130 to be equal in stream segmentation
processing amount. Stream segmentation processing will be
described later. In this embodiment, it is assumed that the
stream segmentation control unit 140 allocates stream seg-
mentation processing to the M stream segmentation units 130
ona slice basis. That is, for each processing target area (slice)
included in the bit stream, the stream segmentation control
unit 140 causes one of the M stream segmentation units 130 to
execute stream segmentation processing for the processing
target area, by notifying the allocation control information.
For example, the allocation control information indicates a
slice number for identifying the slice that is subject to stream
segmentation processing. In other words, the stream segmen-
tation control unit 140 sends the allocation control informa-
tion to one of the M stream segmentation units 130, to desig-
nate the processing target area subject to stream segmentation
processing to the stream segmentation unit 130. Moreover,
based on the result of allocating stream segmentation pro-
cessing to the M stream segmentation units 130 on a slice
basis, the stream segmentation control unit 140 notifies the N
decoding engines 120 of selection information indicating
from which of the M segment stream buffers 152 the N
decoding engines 120 are each to obtain a segment stream.

Each of the M stream segmentation units 130 obtains the
mode information and the allocation control information.
According to the obtained mode information and allocation
control information, each of the M stream segmentation units
130 extracts a slice (processing target area) to be processed
from the bit stream, and segments the slice into N segment
streams (first to N-th segment streams), where the M stream
segmentation units 130 operate in parallel. That is, the stream
segmentation unit 130 in this embodiment segments each
slice included in the bit stream and allocated by the stream
segmentation control unit 140, into one or more MB lines.
The stream segmentation unit 130 then assigns each of the
MB lines to a portion of a corresponding one of N segment
streams to be generated, thereby generating the N segment
streams. This process of segmenting a slice (processing target
area) into a plurality of MB lines and assigning each of the
MB lines to a portion of a corresponding one of N segment
streams is the above-mentioned stream segmentation pro-
cessing. The M stream segmentation units 130 execute the
stream segmentation processing in parallel, thus generating
MxN segment streams.

Note that an MB line is a structural unit made up of one row
of macroblocks horizontally arranged from a left end to a
right end of a picture. In the case where the picture is not
coded in MBAFF (Macroblock Adaptive Frame Field Cod-
ing), the stream segmentation unit 130 segments each pro-
cessing target area (slice) into a plurality of MB lines. In the
case where the picture is coded in MBAFF, on the other hand,
the stream segmentation unit 130 treats two MB lines as one
structural unit (hereinafter referred to as an MB line pair), and
segments each processing target area (slice) into a plurality of
MB line pairs. In other words, in the case of the picture coded
in MBAFF, the stream segmentation unit 130 segments each
processing target area (slice) into a plurality of MB lines, and
assigns two MB lines belonging to the same MB line pair to
aportion of the same segment stream. The following descrip-
tion of the present invention is based on a premise that each
picture is not coded in MBAFF. When necessary processing
differs between the picture not coded in MBAFF and the
picture coded in MBAFF in the present invention, however,
specific processing for MBAFF is described in each instance.
If no specific processing or the like is necessary for MBAFF,
by replacing the “MB line” with the “MB line pair” in the

10

15

20

25

30

35

40

45

50

55

60

65

18

following description, the description can be interpreted as
the description of the present invention in the case where each
picture is coded in MBAFF.

Each of the M stream segmentation units 130 stores N
segment streams generated as a result of segmentation, in one
of the M segment stream buffers 152 that is associated with
the stream segmentation unit 130. That is, the first stream
segmentation unit 130 stores N segment streams generated as
a result of segmentation in the first segment stream buffer
152, the second stream segmentation unit 130 stores N seg-
ment streams generated as a result of segmentation in the
second segment stream buffer 152, and the M-th stream seg-
mentation unit 130 stores N segment streams generated as a
result of segmentation in the M-th segment stream buffer 152.

Moreover, each of the M stream segmentation units 130
treats a slice as a predetermined unit. When segmenting a
slice into a plurality of MB lines, the stream segmentation
unit 130 checks whether or not there is a header immediately
before an MB line in the bit stream or between two macrob-
locks belonging to the MB line. In the case where there is the
header, the stream segmentation unit 130 assigns the header
to a portion of a segment stream together with the MB line.

As a result of such segmentation into MB lines by the
stream segmentation unit 130, a slice included in a picture and
extending over a plurality of MB lines is segmented. Further-
more, upon segmentation into N segment streams, the stream
segmentation unit 130 removes any dependency between
macroblocks over at least two of the N segment streams in
variable length decoding.

Each of the N decoding engines 120 obtains the mode
information and the selection information. According to the
obtained mode information and selection information, each
of'the N decoding engines 120 reads a segment stream to be
processed by the decoding engine 120 from one of the M
segment stream buffers 152 and decodes the read segment
stream, where the N decoding engines 120 operate in parallel.
The N decoding engines 120 thus generate N segments of
decoded image data.

As an example, in the case of being notified to obtain a
segment stream from the first segment stream buffer 152
according to the selection information from the stream seg-
mentation control unit 140, the first decoding engine 120
reads the first segment stream from the area in the first seg-
ment stream buffer 152 assigned to the first decoding engine
120. Likewise, the second decoding engine 120 reads the
second segment stream from the area in the first segment
stream buffer 152 assigned to the second decoding engine
120. The third decoding engine 120 reads the third segment
stream from the area in the first segment stream buffer 152
assigned to the third decoding engine 120. The fourth decod-
ing engine 120 reads the fourth segment stream from the area
in the first segment stream buffer 152 assigned to the fourth
decoding engine 120. The first to fourth decoding engines 120
then respectively decode the first to fourth segment streams in
parallel.

As another example, in the case of being notified to obtain
a segment stream from the M-th segment stream buffer 152
according to the selection information from the stream seg-
mentation control unit 140, the first decoding engine 120
reads the first segment stream from the area in the M-th
segment stream buffer 152 assigned to the first decoding
engine 120. Likewise, the second decoding engine 120 reads
the second segment stream from the area in the M-th segment
stream buffer 152 assigned to the second decoding engine
120. The third decoding engine 120 reads the third segment
stream from the area in the M-th segment stream buffer 152
assigned to the third decoding engine 120. The fourth decod-

US 9,307,260 B2

19

ing engine 120 reads the fourth segment stream from the area
in the M-th segment stream buffer 152 assigned to the fourth
decoding engine 120. The first to fourth decoding engines 120
then respectively decode the first to fourth segment streams in
parallel.

In decoding the segment streams, each of the N decoding
engines 120 decodes the segment stream by performing
motion compensation as necessary with reference to decoded
image data already stored in the frame memory 153.

Furthermore, in decoding a current macroblock which is in
a current segment stream and has been coded by intra-picture
prediction, the corresponding one of the N decoding engines
120 obtains, as adjacent MB information, information of the
decoded macroblocks located at the left above, above, and
right above positions with respect to the current macroblock
to be decoded from the decoding engine 120 which has
decoded the macroblocks. The decoding engine 120 which
has obtained the adjacent MB information decodes the cur-
rent macroblock to be decoded using the adjacent MB infor-
mation. In the same manner, in exemplary cases of perform-
ing deblocking filtering processing and motion vector
prediction processing, the decoding engine 120 obtains, as
adjacent MB information, information of the decoded mac-
roblocks located at the left above, above, and right above
positions with respect to the current macroblock to be
decoded from the decoding engine 120 which has decoded
the macroblocks, and performs the above-mentioned process-
ing.

For simplicity, the following descriptions in this embodi-
ment are given assuming that N=4. In this embodiment, when
decoding of the macroblocks located at the left, left above,
above, and right above positions with respect to the current
macroblock to be decoded is completed, each of the N (N=4)
decoding engines 120 starts decoding the current macroblock
to be decoded using the adjacent MB information. Thus, the
first to fourth decoding engines 120 decode the macroblocks
located at different horizontal positions in the respective MB
lines in parallel.

FIG. 2A is a diagram showing decoding order of a picture
that is not coded in MBAFF.

In the case of a picture that is not coded in MBAFF, the first
decoding engine 120 decodes the Oth MB line, the second
decoding engine 120 decodes the first MB line, the third
decoding engine 120 decodes the second MB line, and the
fourth decoding engine 120 decodes the third MB line. The
k-th (k is an integer equal to or greater than 0) MB line
corresponds to the k-th MB line from the top end of the
picture. For example, the Oth MB line is located at the Oth
position from the top end of the picture.

When the decoding of the picture starts, first the first
decoding engine 120 starts decoding the Oth MB line. Next,
upon completion of the decoding of two leftmost macrob-
locks in the Oth MB line, the second decoding engine 120
starts decoding a leftmost macroblock in the first MB line.
Next, upon completion of the decoding of two leftmost mac-
roblocks in the first MB line, the third decoding engine 120
starts decoding a leftmost macroblock in the second MB line.
Next, upon completion of the decoding of two leftmost mac-
roblocks in the second MB line, the fourth decoding engine
120 starts decoding a leftmost macroblock in the third MB
line.

Accordingly, the (k+1)-th MB line is decoded from left-
most to rightmost macroblocks, with a delay of two macrob-
locks from the k-th MB line.

FIG. 2B is a diagram showing decoding order of a picture
that is coded in MBAFF.

5

10

20

25

30

40

45

50

55

60

65

20

In the case of a picture that is coded in MBAFF, each of the
MB line pairs is a structural unit corresponding to two rows
(MB lines) of macroblocks horizontally arranged from a left
end to aright end of the picture, as described above. Each MB
line pair is adaptively coded by frame coding or field coding
in units of two vertically arranged macroblocks (a macrob-
lock pair). In each macroblock pair, the top macroblock is
decoded first, and the bottom macroblock is decoded next. In
this case as in the case of a picture that is not coded in
MBAFF, the first decoding engine 120 decodes the Oth MB
line pair, the second decoding engine 120 decodes the first
MB line pair, the third decoding engine 120 decodes the
second MB line pair, and the fourth decoding engine 120
decodes the third MB line pair. The k-th (k denotes an integer
equal to or greater than 0) MB line pair is a structural unit
corresponding to the k-th two rows (MB lines) of macrob-
locks from top end of the picture. For example, the Oth MB
line pair are the Oth two MB lines from the top end of the
picture.

When the decoding of the picture starts, first the first
decoding engine 120 starts decoding the Oth MB line pair.
Next, upon completion of the decoding of two leftmost mac-
roblock pairs in the Oth MB line pair, the second decoding
engine 120 starts decoding an upper leftmost macroblock in
the first MB line pair. Next, upon completion of the decoding
of'two leftmost macroblock pairs in the first MB line pair, the
third decoding engine 120 starts decoding an upper leftmost
macroblock in the second MB line pair. Next, upon comple-
tion of the decoding of two leftmost macroblock pairs in the
second MB line pair, the fourth decoding engine 120 starts
decoding an upper leftmost macroblock in the third MB line
pair.

Accordingly, the (k+1)-th MB line pair is decoded from
leftmost to rightmost macroblock pairs, with a delay of two
macroblock pairs from the k-th MB line pair.

In the case of a picture that is not coded in MBAFF, it is
only necessary that the (k+1)-th MB line is decoded with a
delay of at least two macroblocks from the k-th MB line. In
the case of a picture that is coded in MBAFF, it is only
necessary that the (k+1)-th MB line pair is decoded with a
delay of at least two macroblock pairs from the k-th MB line
pair. In short, the picture that is not coded in MBAFF and the
picture that is coded in MBAFF may be decoded with delays
of three or more macroblocks and three or more macroblock
pairs, respectively. It is possible to minimize time for decod-
ing each of pictures both in the case where the (k+1)-th MB
line is decoded with a delay of two macroblocks from the k-th
MB line and in the case where the (k+1)-th MB line pair is
decoded with a delay of two macroblock pairs from the k-th
MB line pair. In each of the exemplary cases where the delay
corresponds to three or more macroblocks and the delay
corresponds to three or more macroblock pairs, time for
decoding the pictures becomes longer as the delay increases.

The image decoding apparatus 100 in this embodiment is
characterized by reconstructing a slice portion group made up
of'one or more portions (slice portions) of a slice generated by
segmentation by the stream segmentation unit 130, as a new
slice. The slice reconstruction involves slice header insertion
processing, slice-end processing, MB address information
update processing, skip run modification processing, and QP
delta setting processing. The QP delta setting processing
includes QP delta modification processing and QP delta
insertion processing. It is to be noted that this embodiment
describes the case where the QP delta setting processing
corresponds to the QP delta modification processing.

US 9,307,260 B2

21

FIG. 3 is an illustration of slice header insertion process-
ing.

For example, the M stream segmentation units 130 seg-
ment a picture pl shown in FIG. 3(a). In the following
description, the M stream segmentation units 130 are collec-
tively referred to as a stream segmentation unit group 130a. In
this embodiment, it is assumed that the processing target area
which is the unit of allocation by the stream segmentation
control unit 140 is a slice, as mentioned earlier. This being so,
in the case where the picture p1 is composed of a plurality of
slices, each stream segmentation unit 130 segments any of the
plurality of slices included in the picture pl. Hence, the
stream segmentation unit group 130a made up of the M
stream segmentation units 130 segments the picture pl, as
described below. Note that, in the case where the processing
target area which is the unit of allocation by the stream seg-
mentation control unit 140 is a picture, one stream segmen-
tation unit 130 segments the picture p1, as described below.

The picture p1 is composed of slices A, B, and C, and also
composed of MB lines [.1 to L12.

The slice A covers MB lines LL1 to L7, and includes a slice
header ha and a plurality of macroblocks mba arranged
sequentially next to the slice header ha. The slice B covers
MB lines L7 and L&, and includes a slice header hb and a
plurality of macroblocks mbb arranged sequentially next to
the slice header hb. The slice C covers MB lines .9 to L12,
and includes a slice header he and a plurality of macroblocks
mbc arranged sequentially next to the slice header he. Each of
the slice headers includes supplemental information neces-
sary for decoding the slice having the slice header.

As shown in FIG. 3(4), the stream segmentation unit group
130a segments the picture pl into MB lines. The stream
segmentation unit group 130qa then assigns, beginning from
the top, each of the MB lines .1 to .12 to a portion of a
corresponding one of the first to fourth segment streams. For
example, the stream segmentation unit group 130a assigns
the MB line L1 to a portion of the first segment stream, the
MB line [.2 to a portion of the second segment stream, the MB
line L3 to a portion of the third segment stream, and the MB
line L4 to a portion of the fourth segment stream. Having
assigned the MB line to the fourth segment stream, the stream
segmentation unit group 130a repeats the MB line assign-
ment to the first segment stream. In detail, the stream segmen-
tation unit group 130a assigns the MB line L5 to a portion of
the first segment stream, the MB line L6 to a portion of the
second segment stream, the MB line [.7 to a portion of the
third segment stream, and the MB line L8 to a portion of the
fourth segment stream.

As a result, the first segment stream includes the MB lines
L1, LS, and L9 in sequence, the second segment stream
includes the MB lines [.2, 1.6, and [.10 in sequence, the third
segment stream includes the MB lines [.3, .7, and L11 in
sequence, and the fourth segment stream includes the MB
lines [.4, .8, and L.12 in sequence.

Each of the MB lines [.1 to L6, a set of the top six macrob-
locks inthe MB line L7, a set of the last 10 macroblocks in the
MB line [.7, and the MB lines 1.8 to 112 is a slice portion of
one of the slices A to C. In the first segment stream, a slice
portion group (the slice A in the first segment stream) is
composed of the MB lines .1 and L5 that are slice portions of
the slice A. In the second segment stream, a slice portion
group (the slice A in the second segment stream) is composed
of'the MB lines 1.2 and L6 that are slice portions of the slice
A.

Here, simply assigning MB lines to segment streams may
be not sufficient to allow the decoding engines 120 to appro-
priately recognize slices included in the segment streams.

10

15

20

25

30

35

40

45

50

55

60

65

22

For example, the first segment stream includes the con-
secutive MB lines L1, L5, and L9 as described above. In this
case, the MB lines L1 and L5 are to be recognized as the slice
A, and the MB line 1.9 is to be recognized as the slice C. For
this purpose, the slice header ha of the slice A needs to be
disposed at the beginning of the MB line .1 that is to be the
beginning of the slice A in the first segment stream, and the
slice header hc of the slice C needs to be disposed at the
beginning of the MB line 1.9 that is to be the beginning of the
slice C in the first segment stream. In the example shown in
FIG. 3, the slice headers ha and hc are disposed in advance at
the beginning of the MB lines .1 and L9, respectively. There-
fore, the stream segmentation unit group 130a simply needs
to assign the MB lines .1, L5, and L9 to the first segment
stream together with the slice headers ha and he.

On the other hand, the second segment stream includes the
consecutive MB lines L2, 1.6, and 1.10 as described above. In
this case, the MB lines [.2 and 1.6 are to be recognized as the
slice A, and the MB line .10 is to be recognized as the slice C.
For this purpose, the slice header ha of the slice A needs to be
disposed at the beginning of the MB line [.2 that is to be the
beginning ofthe slice A in the second segment stream, and the
slice header hc of the slice C needs to be disposed at the
beginning of the MB line .10 that is to be the beginning of the
slice C in the second segment stream.

Hence, when assigning MB lines to portions of the segment
streams, the stream segmentation unit group 130q in this
embodiment generates slice header copies ha', hb', and he' by
copying the slice headers ha, hb, and hc and inserts these slice
header copies into the segment streams as necessary.

For example, the stream segmentation unit group 130a
generates three slice header copies ha' by copying the slice
header ha, and inserts the slice header copies ha' immediately
before the MB lines L2, L3, and L4. Moreover, the stream
segmentation unit group 130a generates one slice header
copy hb' by copying the slice header hb, and inserts the slice
header copy hb' immediately before the MB line L8. Further-
more, the stream segmentation unit group 130a generates
three slice header copies he' by copying the slice header hc,
and inserts the slice header copies he' immediately before the
MB lines 110, L11, and L12.

As aresult, in the second segment stream, the slice header
copy ha' that is a copy of the slice header ha of the slice A is
disposed immediately before the MB line .2 that is the begin-
ning of the slice A, and the slice header copy hc' that is a copy
of the slice header he of the slice C is disposed immediately
before the MB line [.10 that is the beginning of the slice C. In
this way, the second decoding engine 120 can obtain param-
eters required to decode the slices A and C of the second
segment stream, respectively based on the slice header copies
ha' and he'.

Next, a description is given of MB address information
update processing.

The stream segmentation unit group 130a updates MB
address information included in the slice header copies
depending on the insertion positions when inserting the slice
header copies into the segment streams as described above.

More specifically, each of the slice headers of the slices that
constitute a picture in a bit stream includes MB address infor-
mation “first_mb_in_slice” for identifying the address of the
starting macroblock of the slice in the picture. Thus, each of
the slice header copies generated by copying such slice
header originally includes the same MB address information
as the MB address information of the copy-source slice
header. As a result, each of the slice header copies specifies an
erroneous address identified based on the MB address infor-
mation of the slice header copy when inserted at a position

US 9,307,260 B2

23

different from the position of the copy-source slice header in
the picture. In other words, the address identified based on the
MB address information of the slice header copy specifies the
address of the starting macroblock in the slice having the
copy-source slice header in the picture, instead of specifying
the address of the starting macroblock in the slice having the
slice header copy in the segment stream in the picture.

For example, the slice header ha of the slice A in the picture
pl includes MB address information identifying the address
of'the starting macroblock (the starting macroblock in the MB
line 1) in the slice A in the picture p1. Thus, the slice header
copy ha' generated by copying the slice header ha originally
includes MB address information for identifying the address
of'the starting macroblock in the MB line L1 in the picture p1.
When the slice header copy ha' is inserted immediately before
the MB line L2, the address identified based on the MB
address information of the slice header copy ha' specifies the
address of the starting macroblock in the MB line L1 in the
picture pl, instead of specifying the address of the starting
macroblock (the starting macroblock in the MB line [.2) in the
slice A having the slice header copy ha' in the second segment
stream in the picture pl.

For this reason, the stream segmentation unit group 130a in
this embodiment updates the MB address information
included in the slice header copies as described above.

FIG. 4 is an illustration of MB address information update
processing.

First, the stream segmentation unit 130 obtains
“pic_width_in_mbs_minus1” that is information related to
the number of macroblocks in the horizontal direction of the
picture, from an SPS (Sequence Parameter Set) included in
the bit stream.

Furthermore, the stream segmentation unit 130 determines
the address of the starting macroblock in the slice having the
copy-source slice header using the MB address information
“first_mb_in_slice” included in the copy-source slice header.

Next, the stream segmentation unit 130 calculates
“mbposv” that is a value indicating which MB line the start-
ing macroblock belongs to in the picture, based on the deter-
mined address of the starting macroblock. Here, the value
“mbposv” is an integer equal to or greater than 0.

Subsequently, in the case where the MB line located imme-
diately after the position at which the slice header copy is
inserted is apart by n lines when seen from the MB line in
which the copy-source slice header is disposed, the stream
segmentation unit 130 determines the MB address informa-
tion of the slice header copy, based on “first_mb_in_
slice[n]|”=(“mbposv”+n)x(“pic_width_in_mbs_minus1”+
D).

In the case where the picture is coded in MBAFF (Mac-
roblock Adaptive Frame Field Coding), the stream segmen-
tation unit 130 determines the MB address information of the
slice header copy, based on “first_mb_in_slice[n]”=(“mb-
posv”/2+n)x(“pic_width_in_mbs_minus1”+1).

The stream segmentation unit 130 updates the MB address
information originally included in the slice header copy to the
MB address information determined as described above. In
this way, the address identified based on the MB address
information of the slice header copy specifies the correct
address of the starting macroblock in the slice having the slice
header copy in the segment stream in the picture.

Next, a description is given of slice-end processing.

Slice-end information indicating the end of a slice is set at
the end of each of slices that constitute the picture in the bit
stream. Thus, as shown in FIG. 3, simply segmenting the
picture into a plurality of MB lines and assigning each of
these MB lines to a portion of any of the first to fourth segment

10

15

20

25

30

35

40

45

50

55

60

65

24

streams may not be sufficient to allow the decoding engines
120 to appropriately recognize the ends of the slices included
in the segment streams.

For this, the stream segmentation unit 130 in this embodi-
ment also executes slice-end processing as well as the slice
header insertion processing.

FIG. 5 is an illustration of the slice-end processing.

For example, as shown in FIG. 5(a), the slice C of the
picture pl in the bit stream includes the slice header hc, the
MB lines L9 to L12, and slice-end information ec.

The stream segmentation unit group 130a segments the
picture p1 into MB lines. As a result, as shown in FIGS. 5(b)
to 5(e), one stream segmentation unit 130 assigns the MB line
L9 to the first segment stream together with the slice header
hc, the MB line [.10 to the second segment stream, the MB
line .11 to the third segment stream, and the MB line .12 to
the fourth segment stream.

Furthermore, in the aforementioned slice header insertion
processing, the stream segmentation unit 130 generates three
slice header copies hc' by copying the slice header he, and
inserts the respective three slice header copies he' immedi-
ately before the MB lines [.10, .11, and .12 of the second to
fourth segment streams. In addition, in the aforementioned
MB address information update processing, the stream seg-
mentation unit 130 updates the MB address information
included in the slice header copies hc' depending on the
positions of the slice header copies hc' inserted.

Here, in the slice-end processing, the stream segmentation
unit 130 generates slice-end information ec' indicating the
end of the slice C (MB line L.9) in the first segment stream, the
end of the slice C (MB line L10) in the second segment
stream, the end of the slice C (MB line L.11) in the third
segment stream, and the end of the slice C (MB line [.12) in
the fourth segment stream. Subsequently, the stream segmen-
tation unit 130 sets the generated slice-end information ec' at
the positions immediately after the MB lines 1.9, .10, .11,
and [L12 of the first to fourth segment streams. The stream
segmentation unit 130 discards the slice-end information ec
originally included in the bit stream when segmenting the bit
stream into MB lines. In addition, since the slice-end infor-
mation ec is identical to the slice-end information ec', the MB
line 112 is finally assigned to the fourth segment stream
together with the slice-end information ec' (ec).

In this way, each of the decoding engines 120 can appro-
priately recognize the ends of the slices in the assigned seg-
ment stream.

The following describes processing of allocating slices
included in the bit stream by the stream segmentation control
unit 140.

As mentioned above, the image decoding apparatus 100 in
this embodiment includes the M stream segmentation units
130 and the N decoding engines 120, and performs parallel
decoding processing on the bit stream. By enabling parallel
processing in the whole system in this way, it is possible to
achieve an improvement in performance of the whole decod-
ing processing.

Each of the M stream segmentation units 130 segments, as
a predetermined unit (processing target area), each slice in a
coded picture included in the bit stream into one or more MB
lines. Here, since the size of each slice is not uniform, the
processing amount varies between the M stream segmenta-
tion units 130 depending on the slice.

Even in a system where all slices are uniform in size, the
target of processing is a bit stream, and so the processing
amount depends on the amount of code of each slice. In a
typical moving picture coding scheme, a bit stream is variable
length coded, where the amount of code varies according to

US 9,307,260 B2

25

data. Besides, slices in H.264/AVC have types such as [slice,
P slice, and B slice. There is a tendency that the I slice on
which intra-picture coding is performed has a large amount of
code whereas the P slice and the B slice on which not only
intra-picture coding but also inter-picture coding is per-
formed have a small amount of code. Thus, the amount of
code of each coded slice included in a bit stream is not
uniform but can vary widely. Accordingly, if inputted coded
slices are simply allocated sequentially to the M stream seg-
mentation units 130, the processing amount of each stream
segmentation unit 130 is not equal, making it impossible to
sufficiently achieve the advantageous effect of improving
processing performance by parallelization.

In view of this, the stream segmentation control unit 140
allocates slices to the stream segmentation units 130 so that
the processing amount of each stream segmentation unit 130
is equal.

Each of FIGS. 6A and 6B is an illustration of a specific
example of'slice allocation processing by the stream segmen-
tation control unit 140. It is assumed in this embodiment that
M=2, for simplicity’s sake.

FIG. 6A is a diagram showing an example of a bit stream in
H.264/AVC. The bit stream in this example includes an SPS
(Sequence Parameter Set), PPSs (Picture Parameter Sets),
and slice data (slice) constituting each picture. A picture 0 is
composed of only a slice 0. A picture 1 is composed of slices
1 and 2. A picture 2 is composed of slices 3 and 4.

The arrows in FIG. 6A indicate reference relationships
between the slice data and the PPSs and reference relation-
ships between the PPSs and the SPS. For example, the slice 0
is decoded using header information included in a PPS 0, and
the slices 1 and 2 are decoded using header information
included in a PPS 1. Meanwhile, the SPS that includes
sequence information of the stream is referenced to by the
PPSs 0 to 2. That is, the SPS shown in FIG. 6A is used for
decoding all of the slices O to 4.

Thus, in H.264/AVC, there is an instance where a plurality
of slices reference to the same header information (SPS,
PPS). Therefore, in the case of allocating stream segmenta-
tion processing to each of the M stream segmentation units
130, all stream segmentation units 130 are required to equally
decode and analyze the header information such as the SPS
and the PPS.

FIG. 6B is a diagram showing processing of allocating the
series of slices by the stream segmentation control unit 140.
Upon processing start, each stream segmentation unit 130
holds a slice number of a slice to be processed. As an example,
the first stream segmentation unit 130 holds SN1=0 as an
initial value of a slice number of a slice to be processed, while
the second stream segmentation unit 130 holds SN2=0 as an
initial value of a slice number of a slice to be processed.

At time 10, the first stream segmentation unit 130 and the
second stream segmentation unit 130 are both not engaged in
stream segmentation processing, and accordingly the stream
segmentation control unit 140 sends allocation control infor-
mation to notify the first stream segmentation unit 130 to
decode the slice 0 and the second stream segmentation unit
130 to decode the slice 1.

Upon being notified to decode the slice 0 from the stream
segmentation control unit 140, the first stream segmentation
unit 130 compares the slice number of the slice notified to be
decoded, with the value of SN1 held as the slice number of the
slice to be processed. At this time, both slice numbers are 0,
i.e. the two slice numbers match each other, so that the first
stream segmentation unit 130 performs stream segmentation
processing on a slice inputted first.

20

40

45

50

55

26

In detail, the first stream segmentation unit 130 first
decodes and analyzes the SPS, and extracts each parameter
necessary for stream segmentation processing. Since the slice
number of the slice notified by the allocation control infor-
mation matches the value of SN1, the first stream segmenta-
tion unit 130 outputs the inputted SPS directly to the first
segment stream buffer 152. Next, the first stream segmenta-
tion unit 130 decodes and analyzes the PPS 0, and extracts
each parameter necessary for stream segmentation process-
ing. The first stream segmentation unit 130 equally outputs
the inputted PPS 0 directly to the first segment stream buffer
152. The first stream segmentation unit 130 then performs
stream segmentation processing on the slice 0, and outputs N
segment streams generated as a result to the first segment
stream buffer 152.

On the other hand, upon being notified to decode the slice
1 from the stream segmentation control unit 140 by the allo-
cation control information, the second stream segmentation
unit 130 compares the slice number of the slice notified to be
decoded, with the value of SN2 held as the slice number of the
slice to be processed. Atthis time, the slice number of the slice
notified to be decoded is 1 whereas the value of SN2 is 0, with
there being a difference of 1. Accordingly, the second stream
segmentation unit 130 skips processing for one inputted slice,
and performs stream segmentation processing on a slice
inputted second. That is, the second stream segmentation unit
130 skips stream segmentation processing for the number of
slices corresponding to the difference.

In detail, the second stream segmentation unit 130 first
decodes and analyzes the SPS, and extracts each parameter
necessary for stream segmentation processing. Since the slice
number of the slice notified to be decoded does not match the
value of SN2, however, the second stream segmentation unit
130 does not output the SPS to the second segment stream
buffer 152. Next, the second stream segmentation unit 130
decodes and analyzes the PPS 0 and extracts each parameter
necessary for stream segmentation processing, but equally
does not output the inputted PPS 0 to the second segment
stream buffer 152. The second stream segmentation unit 130
then skips stream segmentation processing on the inputted
slice 0. Hence, the second stream segmentation unit 130 does
not output a result of stream segmentation processing of the
slice O to the second segment stream buffer 152. Note that the
stream segmentation processing skip is carried out by search-
ing for start code that accompanies coded data. Having
skipped the processing of the slice 0, the second stream seg-
mentation unit 130 increments SN2 to SN2=1.

Here, the second stream segmentation unit 130 does not
output the SPS and the PPS 0 to the second segment stream
buffer 152, in order to prevent the N decoding engines 120
from redundantly receiving the same header information.
Since the first stream segmentation unit 130 outputs the SPS
and the PPS 0 to the first segment stream buffer 152, the
second stream segmentation unit 130 refrains from outputting
the SPS and the PPS 0.

Following this, the second stream segmentation unit 130
decodes and analyzes the PPS 1, and extracts each parameter
necessary for stream segmentation processing. Since the slice
number of the slice notified to be decoded matches the value
of SN2, the second stream segmentation unit 130 outputs the
inputted PPS 1 directly to the second segment stream buffer
152. The second stream segmentation unit 130 then performs
stream segmentation processing on the slice 1, and outputs N
segment streams generated as a result to the second segment
stream buffer 152.

At time n, the stream segmentation processing of the slice
1 by the second stream segmentation unit 130 ends, and

US 9,307,260 B2

27

accordingly the second stream segmentation unit 130 notifies
the stream segmentation control unit 140 of the processing
completion and also information of the segment streams out-
putted to the second segment stream buffer 152. In detail, the
second stream segmentation unit 130 notifies the number of
NAL units for the PPS 1 and the slice 1 actually outputted to
the second segment stream bufter 152. A NAL unit is a struc-
tural unit of a stream in H.264/AVC. An SPS, a PPS, a slice,
and the like are each contained in a NAL unit.

Since each slice is variable in size, there is a possibility that
the number of MB lines included in a slice is less than N
which is the number of segment streams. This being so, the
number of NAL units corresponding to the slice processed by
the stream segmentation unit 130 varies for each of the N
segment streams generated, taking the value of either O or 1.
Hence, the stream segmentation unit 130 notifies the stream
segmentation control unit 140 of the number of NAL units
outputted for each of the N segment streams.

In the operation example shown in FIG. 6B, it is assumed
that the number of MB lines included in each slice is not less
than N and so the number of NAL units corresponding to one
slice is 1 regardless of the segment stream, for simplicity’s
sake. The second stream segmentation unit 130 notifies the
stream segmentation control unit 140 that two NAL units
have been processed in total for the PPS 1 and the slice 1. At
the same time, having completed the stream segmentation
processing of the slice 1, the second stream segmentation unit
130 increments SN2 to SN2=2. Upon being notified of the
processing completion from the second stream segmentation
unit 130, the stream segmentation control unit 140 notifies the
second stream segmentation unit 130 to decode the slice 2.

Upon being notified to decode the slice 2 from the stream
segmentation control unit 140, the second stream segmenta-
tion unit 130 compares the slice number of the slice notified to
be decoded, with the value of SN2 held as the slice number of
the slice to be processed. At this time, both slice numbers are
2, i.e. the two slice numbers match each other, so that the
second stream segmentation unit 130 performs stream seg-
mentation processing on a slice inputted first.

In detail, the second stream segmentation unit 130 per-
forms stream segmentation processing on the slice 2. Since
the slice number of the slice notified to be decoded matches
the value of SN2, the second stream segmentation unit 130
outputs N segment streams generated as a result to the second
segment stream buffer 152.

At time 12, the stream segmentation processing of the slice
0 by the first stream segmentation unit 130 ends, and accord-
ingly the first stream segmentation unit 130 notifies the
stream segmentation control unit 140 of the processing
completion and also information of the segment streams out-
putted to the first segment stream buffer 152, namely, “3” as
the number of NAL units for the SPS, the PPS 0, and the slice
0. At the same time, having completed the stream segmenta-
tion processing of the slice 0, the first stream segmentation
unit 130 increments SN1 to SN1=1. Upon being notified of
the processing completion from the first stream segmentation
unit 130, the stream segmentation control unit 140 notifies the
first stream segmentation unit 130 to decode the slice 3 by the
allocation control information.

Upon being notified to decode the slice 3 from the stream
segmentation control unit 140, the first stream segmentation
unit 130 compares the slice number of the slice notified to be
decoded, with the value of SN1 held as the slice number of the
slice to be processed. At this time, the slice number of the slice
notified to be decoded is 3 whereas the value of SN1 is 1, with
there being a difference of 2. Accordingly, the first stream

10

15

20

25

30

35

40

45

50

55

60

65

28

segmentation unit 130 skips processing for two inputted
slices, and performs stream segmentation processing on a
slice inputted third.

In detail, the first stream segmentation unit 130 first
decodes and analyzes the PPS 1, and extracts each parameter
necessary for stream segmentation processing. Since the slice
number of the slice notified to be decoded does not match the
value of SN1, however, the first stream segmentation unit 130
does not output the PPS 1 to the first segment stream buffer
152. The first stream segmentation unit 130 then skips stream
segmentation processing on the inputted slice 1. Hence, the
first stream segmentation unit 130 does not output a result of
stream segmentation processing of the slice 1 to the first
segment stream buffer 152. Having skipped the processing of
the slice 1, the first stream segmentation unit 130 increments
SN1 to SN1=2. Next, the slice 2 is inputted to the first stream
segmentation unit 130. Since the slice number of the slice
notified to be decoded still does not match the value of SN1,
however, the first stream segmentation unit 130 skips stream
segmentation processing on the inputted slice 2, too. Hence,
the first stream segmentation unit 130 does not output a result
of stream segmentation processing of the slice 2 to the first
segment stream buffer 152. Having skipped the processing of
the slice 2, the first stream segmentation unit 130 increments
SN1 to SN1=3.

Following this, the first stream segmentation unit 130
decodes and analyzes the PPS 2, and extracts each parameter
necessary for stream segmentation processing. Since the slice
number of the slice notified to be decoded matches the value
of SN1, the first stream segmentation unit 130 outputs the
inputted PPS 2 directly to the first segment stream buffer 152.
The first stream segmentation unit 130 then performs stream
segmentation processing on the slice 3, and outputs N seg-
ment streams generated as a result to the first segment stream
buffer 152.

At time 13, the stream segmentation processing of the slice
2 by the second stream segmentation unit 130 ends, and
accordingly the second stream segmentation unit 130 notifies
the stream segmentation control unit 140 of the processing
completion and also information of the segment streams out-
putted to the second segment stream buffer 152, namely, “1”
as the number of NAL units for the slice 2. At the same time,
having completed the stream segmentation processing of the
slice 2, the second stream segmentation unit 130 increments
SN2 to SN2=3. Upon being notified of the processing
completion from the second stream segmentation unit 130,
the stream segmentation control unit 140 notifies the second
stream segmentation unit 130 to decode the slice 4 by the
allocation control information.

Upon being notified to decode the slice 4 from the stream
segmentation control unit 140, the second stream segmenta-
tion unit 130 compares the slice number of the slice notified to
be decoded, with the value of SN2 held as the slice number of
the slice to be processed. At this time, the slice number of the
slice notified to be decoded is 4 whereas the value of SN2 is
3, with there being a difference of 1. Accordingly, the second
stream segmentation unit 130 skips processing for one input-
ted slice, and performs stream segmentation processing on a
slice inputted second.

In detail, the second stream segmentation unit 130 first
decodes and analyzes the PPS 2, and extracts each parameter
necessary for stream segmentation processing. Since the slice
number of the slice notified to be decoded does not match the
value of SN2, however, the second stream segmentation unit
130 does not output the PPS 2 to the second segment stream
buffer 152. The second stream segmentation unit 130 then
skips stream segmentation processing on the inputted slice 3.

US 9,307,260 B2

29

Hence, the second stream segmentation unit 130 does not
output a result of stream segmentation processing of the slice
3 to the second segment stream buffer 152. Having skipped
the processing of the slice 3, the second stream segmentation
unit 130 increments SN2 to SN2=4.

Next, since the slice number of the slice notified to be
decoded matches the value of SN2, the second stream seg-
mentation unit 130 performs stream segmentation processing
on the slice 4, and outputs N segment streams generated as a
result to the second segment stream buffer 152.

At time t4, the stream segmentation processing of the slice
3 by the first stream segmentation unit 130 ends, and accord-
ingly the first stream segmentation unit 130 notifies the
stream segmentation control unit 140 of the processing
completion and also information of the segment streams out-
putted to the first segment stream buffer 152, namely, “2” as
the number of NAL units for the PPS2 and the slice 3. At the
same time, having completed the stream segmentation pro-
cessing of the slice 3, the first stream segmentation unit 130
increments SN1 to SN1=4.

Likewise, at time t5, the stream segmentation processing of
the slice 4 by the second stream segmentation unit 130 ends,
and accordingly the second stream segmentation unit 130
notifies the stream segmentation control unit 140 of the pro-
cessing completion and also information of the segment
streams outputted to the second segment stream buffer 152,
namely, “1” as the number of NAL units for the slice 4. At the
same time, having completed the stream segmentation pro-
cessing of the slice 4, the second stream segmentation unit
130 increments SN2 to SN2=5.

As described above, the stream segmentation control unit
140 sequentially allocates slice decoding processing (stream
segmentation processing) to the stream segmentation units
130 that have completed processing. This enables the stream
segmentation units 130 to be equal in processing amount.

FIG. 7 is a diagram showing states of the segment stream
buffers 152 in the case of performing slice allocation and
stream segmentation processing shown in FIG. 6B. Slices O to
4 shown in FIG. 7 each represent data of a portion of the slice.

N (N=4) segment streams corresponding to the slices 0 and
3 are stored in the first segment stream buffer 152. Mean-
while, N (N=4) segment streams corresponding to the slices
1,2, and 4 are stored in the second segment stream buffer 152.
Thus, the slices are stored in the two segment stream buffers
152 in a distributed manner according to the processing
amount of each stream segmentation unit 130, and so the
storage order of the slices is not uniform.

Accordingly, to enable the N decoding engines 120 to
obtain the segment streams in the same order of slices as in the
bit stream prior to segmentation, the stream segmentation
control unit 140 notifies the N decoding engines 120 of selec-
tion information indicating from which of the M segment
stream buffers 152 the segment streams are to be obtained.

FIG. 8 is a diagram showing an example of a format of
selection information in the case of performing slice alloca-
tion and stream segmentation processing shown in FIG. 6B.

As shown in FIG. 8, the selection information includes
segment stream buffer information and NAL unit number
information for each slice, and is generated each time the
stream segmentation control unit 140 performs slice alloca-
tion processing. The segment stream buffer information indi-
cates whether the stream segmentation control unit 140 allo-
cates the slice to the first stream segmentation unit 130 or the
second stream segmentation unit 130. That is, the segment
stream buffer information indicates the segment stream buffer
in which the segment streams outputted from the stream
segmentation unit 130 as a result of performing stream seg-

10

20

25

30

35

40

45

30

mentation processing on the slice are stored. The NAL unit
number information indicates the number of NAL units out-
putted when the stream segmentation unit 130 processes the
slice, and is notified from the stream segmentation unit 130 to
the stream segmentation control unit 140 upon completion of
the processing by the stream segmentation unit 130.

As mentioned earlier, there is a possibility that the NAL
unit number information varies for each of the N segment
streams. Accordingly, each of the N decoding engines 120 is
notified of separate selection information depending on the
corresponding one of the N segment streams. In detail, the
first decoding engine 120 is notified of selection information
corresponding to the first segment stream, the second decod-
ing engine 120 is notified of selection information corre-
sponding to the second segment stream, the third decoding
engine 120 is notified of selection information corresponding
to the third segment stream, and the fourth decoding engine
120 is notified of selection information corresponding to the
fourth segment stream. Based on the above-mentioned
assumption that the number of MB lines included in each slice
is not less than N and so the number of NAL units correspond-
ing to one slice is 1 regardless of the segment stream, it is
assumed here that the N decoding engines 120 are notified of
the same selection information.

The selection information generated by the stream seg-
mentation control unit 140 is notified to the N decoding
engines 120 and stored in, for example, a FIFO (first-in first-
out) memory in each of the N decoding engines 120. The
selection information stored in the FIFO memory is read by
the decoding engine 120 in notification order, and used for
stream obtainment from the segment stream buffer 152.

In detail, the decoding engine 120 first reads the segment
stream buffer information=1 and the NAL unit number infor-
mation=3, as the selection information of the slice 0. Accord-
ing to the selection information of the slice 0, the decoding
engine 120 obtains three NAL units (the SPS, the PPS 0, and
the slice 0) from the first segment stream buffer 152. The
decoding engine 120 then reads the segment stream buffer
information=2 and the NAL unit number information=2, as
the selection information of the slice 1. According to the
selection information of the slice 1, the decoding engine 120
obtains two NAL units (the PPS 1 and the slice 1) from the
second segment stream buffer 152. The decoding engine 120
then reads the segment stream buffer information=2 and the
NAL unit number information=1, as the selection informa-
tion of the slice 2. According to the selection information of
the slice 2, the decoding engine 120 obtains one NAL unit (the
slice 2) from the second segment stream buffer 152. The
decoding engine 120 then reads the segment stream buffer
information=1 and the NAL unit number information=2, as
the selection information of the slice 3. According to the
selection information of the slice 3, the decoding engine 120
obtains two NAL units (the PPS 2 and the slice 3) from the
first segment stream buffer 152. The decoding engine 120
then reads the segment stream buffer information=2 and the
NAL unit number information=1, as the selection informa-
tion of the slice 4. According to the selection information of
the slice 4, the decoding engine 120 obtains one NAL unit (the
slice 4) from the second segment stream buffer 152.

Thus, through the use of the selection information notified
from the stream segmentation control unit 140, the decoding
engine 120 can obtain the segment streams (the slices of the
segment streams) from the M segment stream buffers 152 in
the same order of slices as in the bit stream inputted to the
decoder 110.

Note that the slice allocation processing described with
reference to FIGS. 6 A to 8 is merely one processing operation

US 9,307,260 B2

31

example of the image decoding apparatus 100 according to
the present invention, and the present invention is not limited
to the processing operation described here.

For example, though the stream segmentation control unit
140 designates the slice number when notifying the stream
segmentation unit 130 to decode the slice in FIG. 6B, the
stream segmentation control unit 140 may designate the num-
ber of'slices to be skipped, instead of the slice number. In this
case, the stream segmentation control unit 140 keeps a record
of the number of slices allocated to each of the M stream
segmentation units 130 and, based on this information, cal-
culates the number of slices to be skipped. Moreover, though
the stream segmentation unit 130 notifies the stream segmen-
tation control unit 140 of the processing completion and the
number of NAL units outputted to the segment stream buffer
152 at the end of the stream segmentation processing of the
slice by the stream segmentation unit 130 in FIG. 6B, the
stream segmentation unit 130 may notify the number of bits
of the segment stream outputted to the segment stream buffer
152, instead of the number of NAL units outputted to the
segment stream buffer 152. That is, the stream segmentation
unit 130 may notify any information that enables the decod-
ing engine 120 to determine the size of the segment stream to
be obtained from the segment stream buffer 152.

Moreover, though the segment stream buffer information
directly designates the buffer number of the segment stream
buffer 152 in FIG. 8, information other than the buffer number
may instead be used. For example, in the case where M=2, the
segment stream buffer information may be information indi-
cating whether or not the segment stream bufter 152 storing
the segment stream corresponding to the slice as the process-
ing target is the same as the segment stream bufter 152 storing
the segment stream corresponding to the immediately preced-
ing slice. That is, the segment stream buffer information may
be any information that enables the decoding engine 120 to
appropriately obtain the segment streams from the plurality
of segment stream bufters 152. Moreover, though the selec-
tion information includes the NAL unit number information
in FIG. 8 as an example, the selection information may
include information indicating the number of bits of the seg-
ment stream instead of the NAL unit number information, as
mentioned above.

FIG. 9 is a flowchart showing overall operations performed
by the image decoding apparatus 100 in this embodiment.

First, the image decoding apparatus 100 obtains a bit
stream (Step S10). The image decoding apparatus 100 deter-
mines the current coded picture to be processed in the bit
stream, and also allocates slices to make the processing
amount equal, in order to perform stream segmentation in
parallel (Step S12). Furthermore, the image decoding appa-
ratus 100 extracts an MB line by segmenting the picture to be
processed (Step S14). In the case where a slice header exists
immediately before an MB line or between two macroblocks
belonging to the MB line, the MB line is extracted together
with the slice header.

Next, prior to assigning the current MB line extracted by
the segmentation in Step S14 to one of the first to N-th
segment streams to be generated, the image decoding appa-
ratus 100 determines whether or not slice reconstruction pro-
cessing is required (more specifically, whether or not a slice
header needs to be inserted immediately before the MB line,
whether or not slice-end information needs to be set imme-
diately after the MB line already assigned, whether or not MB
skip run information needs to be modified, and whether or not
QP variations need to be set) (Step S16).

The image decoding apparatus 100 executes slice recon-
struction processing (Step S18) in the case where it deter-

10

15

20

25

30

35

40

45

50

55

60

65

32

mines in Step S16 that the slice reconstruction processing
needs to be performed (Yes in Step S16). In short, the image
decoding apparatus 100 executes at least one of the aforemen-
tioned slice header insertion processing, slice-end process-
ing, skip run modification processing, and QP delta setting
processing. In addition, the image decoding apparatus 100
also executes MB address information update processing
when executing the slice header insertion processing. Note
that the stream segmentation processing from Steps S14 to
S20 is performed in parallel on a slice basis.

Subsequently, the image decoding apparatus 100 assigns
the MB line to one of the first to N-th segment streams to be
generated (Step S20). Step S20 is repeatedly performed to
sequentially assign MB lines to the first to N-th segment
streams, thereby generating the first to N-th segment streams.

The image decoding apparatus 100 decodes, in parallel, the
MB lines assigned to the first to N-th segment streams (Step
S22). In the case where no MB line is assigned to one of the
first to N-th segment streams, the image decoding apparatus
100 decodes the remaining segment streams other than the
segment stream not assigned with any MB line.

Next, the image decoding apparatus 100 determines
whether or not all the MB lines in the picture have already
been assigned (Step S24), and when it is determined that all
the MB lines have not yet been assigned (No in Step S24),
repeats the execution of the processing starting with Step S14.
In contrast, when it is determined that all the MB lines have
already been assigned (Yes in Step S24), the image decoding
apparatus 100 further determines whether or not all the pic-
tures in the bit stream have already been segmented (Step
S26). Here, when it is determined that all the pictures have not
yet been segmented (No in Step S26), the image decoding
apparatus 100 repeats the execution of the processing starting
with Step S12. In contrast, when it is determined that all the
pictures have already been segmented (Yes in Step S26), the
image decoding apparatus 100 completes the decoding pro-
cessing.

The processing operations indicated by the flowchart in
FIG. 9 are examples of processing operations performed by
the image decoding apparatus 100 according to the present
invention. The present invention is not limited to the process-
ing operations shown in this flowchart.

For example, in the flowchart in FIG. 9, the stream seg-
mentation unit 130 of the image decoding apparatus 100
performs slice header insertion processing in the slice recon-
struction process of Step S18. However, the stream segmen-
tation unit 130 may directly provide the slice header copies to
the decoding engines 120 that require the respective slice
headers without performing such slice header insertion pro-
cessing. In addition, in the flowchart in FIG. 9, the stream
segmentation unit 130 performs MB address information
update processing in the slice reconstruction process of Step
S18. However, the stream segmentation unit 130 may skip
such update processing. In this case, for example, the decod-
ing engines 120 update the MB address information of the
slice header copies in the segment streams. In addition, in the
flowchart in FIG. 9, the stream segmentation unit 130 per-
forms slice-end processing in the slice reconstruction process
of Step S18. However, the stream segmentation unit 130 may
skip such slice reconstruction processing. In this case, for
example, such slice-end processing may be performed on the
already-assigned MB lines, after each of the MB lines is
assigned to a corresponding one of the first to N-th segment
streams in Step S20 and immediately before a next new MB
line is assigned to one of the segment streams by the stream
segmentation unit 130.

US 9,307,260 B2

33

Here, a detailed description is given of a structure and
operations of the stream segmentation unit 130.

FIG. 10 is a block diagram showing the structure of the
stream segmentation unit 130.

The stream segmentation unit 130 includes a processing
management unit 130, a selector Sct, a start code detection
unit 131, an EPB removal unit 1324, an EPB insertion unit
1324, a slice header insertion unit 133, and slice data process-
ing units 134q and 1345.

The processing management unit 130m obtains mode
information and allocation control information and, accord-
ing to the obtained information, controls the other compo-
nents included in the stream segmentation unit 130. For
example, the processing management unit 130 holds the
slice number (such as SN1, SN2, or the like) of the slice to be
processed and controls the selector Sct based on the slice
number so that the stream segmentation processing as shown
in FIGS. 6 A to 8 is carried out. Thus, the processing manage-
ment unit 130m causes the segment stream generated from the
SPS, the PPS, or the processing target slice to be outputted or
not to be outputted.

The start code detection unit 131 reads a bit stream from the
stream buffer 151, and detects the start code of each of NAL
units.

The EPB removal unit 1324 removes the EPBs (emulation
prevention bytes) from the bit stream, and outputs the bit
stream without the EPBs to the slice data processing units
134a and 13454. Furthermore, the EPB removal unit 132a
obtains information such as SPSs (Sequence Parameter Sets)
and PPSs (Picture Parameter Sets) that are included in layers
higher than the layer of slices in the bit stream, and outputs the
information items to the EPB insertion unit 1325 so as to
enable the EPB insertion unit 1325 to insert the information
items to the four segment streams.

The EPB insertion unit 1324 inserts the EPBs removed by
the EPB removal unit 1324 into the segment streams that are
generated by segmenting the bit stream.

The slice header insertion unit 133 executes the aforemen-
tioned slice header insertion processing and MB address
information update processing. The slice header insertion
unit 133 sends, to the slice data processing units 134a and
1345 at a predetermined timing, a slice header processing
detail notification M1 indicating whether or not slice header
insertion processing is to be performed, and upon receiving a
slice-end processing completion notification M2 from the
slice data processing units 134a and 1344, executes the slice
header insertion processing. In the subsequent slice header
insertion processing, the slice header insertion unit 133 out-
puts, to the EPB insertion unit 1324, the slice header imme-
diately before a current MB line and the slice header copy
with updated MB address information.

The slice data processing units 134a and 1345 generate
four segment streams by segmenting the bit stream without
the EPBs, and output the four segment streams. The segment
streams outputted from the slice data processing units 134a
and 1344 do not include slice headers and slice header copies
in the MB lines or at the positions immediately before the MB
lines. Here, the slice data processing unit 134a executes pro-
cessing in accordance with CAVLD (Context-Adaptive Vari-
able Length Decoding), and segments the bit stream gener-
ated by CAVLC (Context-Adaptive Variable Length Coding)
into four segment streams. Furthermore, the slice data pro-
cessing unit 1345 executes processing in accordance with
CABAD (Context-Adaptive Binary Arithmetic Decoding),
and segments the bit stream generated by CABAC (Context-
Adaptive Binary Arithmetic Coding) into four segment
streams.

5

10

15

20

25

30

35

40

45

50

55

60

65

34

The slice data processing unit 134a includes a slice data
layer decoding unit 1354, a macroblock layer decoding unit
1364, a skip run modification unit 137a, a QP delta modifi-
cation unit 1384, and a segment boundary detection unit
139a.

The slice data layer decoding unit 1354 performs variable
length decoding on coded data in the slice data layer in the bit
stream. The macroblock layer decoding unit 1364 performs
variable length decoding on coded data in the macroblock
layer in the bit stream. Dependencies between adjacent mac-
roblocks are dissolved by such variable length decoding per-
formed by the slice data layer decoding unit 1354 and the
macroblock layer decoding unit 136a. The slice data layer
decoding unit 135a and the macroblock layer decoding unit
136a may decode only information (specifically, nCs (non-
zero coefficients) in CAVLC) which is dependent on macrob-
locks adjacent to a current macroblock to be processed.

The skip run modification unit 1374 modifies the MB skip
run information “mb_skip_run” decoded by the slice data
layer decoding unit 135a, re-codes the modified MB skip run
information, and outputs the re-coded MB skip run informa-
tion. More specifically, in the case where the MB skip run
information indicates the number of consecutive blocks
which cross the boundary between at least two consecutive
slice portions in the bit stream, the skip run modification unit
137a segments the number of consecutive blocks, and sets
MB skip run information modified to indicate the number of
blocks for each slice portion, for each of the segment streams
to be assigned with at least two consecutive slice portions.
Furthermore, in the case where a plurality of blocks corre-
sponding to the plurality of pieces of MB skip run information
to be set are consecutive in at least one of the segment streams,
the skip run modification unit 137a converts the plurality of
pieces of MB skip run information to a single piece of MB
skip run information indicating the total number of the blocks
indicated by the plurality of pieces of MB skip run informa-
tion.

Here, the MB skip run information is an example of a first
code word indicating the number of the consecutive blocks in
the case where blocks of a particular kind are consecutive in
a slice of a coded picture. More specifically, the MB skip run
information indicates the number of macroblocks to be con-
secutively skipped.

For example, in the case where a set of macroblocks to be
skipped in sequence cross the boundary between a plurality of
MB lines in a slice of the bit stream, the MB skip run infor-
mation decoded by the slice data layer decoding unit 135«
indicates the number of macroblocks to be skipped in
sequence in the set. In such a case, segmenting a picture into
MB lines and assigning the MB lines to separate segment
streams changes the number of macroblocks to be skipped in
sequence in each segment stream. In short, the dependency
between the MB lines based on the MB skip run information
is broken.

For this, the skip run modification unit 137a determines,
for each of MB lines including a portion of such set, the
number of macroblocks which constitute the portion included
in the MB line and are to be skipped in sequence. Subse-
quently, the skip run modification unit 137a¢ modifies the MB
skip run information such that the number of macroblocks
indicated by the MB skip run information is the number
specified for the MB line.

The QP delta modification unit 1384 modifies the QP varia-
tion “mb_qp_delta” of each macroblock decoded by the mac-
roblock layer decoding unit 1364, re-codes the modified QP
variation, and outputs the re-coded QP variation. Stated dif-
ferently, in the case where the QP variation indicates a varia-

US 9,307,260 B2

35

tion between blocks which cross the boundary between two
MB lines, the QP delta modification unit 138a calculates a
variation in coding coefficient based on a new context of the
blocks in each segment stream. Subsequently, the QP delta
modification unit 138a updates the QP variation into the
calculated variation.

Here, the QP variation is an example of a second code word
indicating a variation in coding coefficient between consecu-
tive blocks in a slice of a coded picture. More specifically, the
QP variation is included in a macroblock (current macrob-
lock), and indicates a difference value between the QP value
of'the current macroblock and the QP value of the macroblock
located immediately before the current macroblock.

In other words, the picture is segmented into MB lines, and
when each of the MB lines is assigned to a corresponding one
of the plurality of segment streams, the consecutive macrob-
locks having a boundary corresponding to the boundary of the
MB lines are assigned to separate segment streams. As a
result, the decoding engine 120 which decodes the segment
stream including one of the consecutive macroblocks (current
macroblock) cannot derive the QP value of the current mac-
roblock based on the QP variation of the current macroblock.
In short, the dependency between the MB lines based on the
QP variation is broken.

To prevent this, the QP delta modification unit 138a re-
calculates QP variation of each macroblock (current macrob-
lock), based on the new context of macroblocks in the seg-
ment stream.

The segment boundary detection unit 1394 segments the
bit stream into four segment streams. More specifically, the
segment boundary detection unit 139a segments each picture
or slice into a plurality of MB lines, and assigns each of the
MB lines to a corresponding one of the four segment streams.
In the case where a slice header is placed immediately before
a current MB line or between two macroblocks belonging to
the current MB line, the segment boundary detection unit
139a assigns only the MB line to a corresponding one of the
segment streams without assigning the slice header. Further-
more, the segment boundary detection unit 139a provides
each of the segment streams with MB skip run information
obtained from the skip run modification unit 1374 and the QP
variation obtained from the QP delta modification unit 138a.

Furthermore, when the segment boundary detection unit
139a detects the end of a current slice in the segment stream
and receives the slice header processing detail notification
M1 from the slice header insertion unit 133, it executes the
aforementioned slice-end processing according to the details
indicated by the slice header processing detail notification
M1. In addition, upon completion of the slice-end processing,
the segment boundary detection unit 139« sends the slice-end
processing completion notification M2 to the slice header
insertion unit 133.

The slice data processing unit 1345 includes a slice data
layer decoding unit 1355, a macroblock layer decoding unit
136, a QP delta modification unit 1385, and a segment
boundary detection unit 1394.

The slice data layer decoding unit 1355 performs variable
length decoding (arithmetic decoding) on coded data in the
slice data layer in the bit stream. The macroblock layer decod-
ing unit 1365 performs variable length decoding (arithmetic
decoding) on coded data in the macroblock layer in the bit
stream. Dependencies between adjacent macroblocks are dis-
solved by such variable length decoding performed by the
slice data layer decoding unit 1354 and the macroblock layer
decoding unit 1365.

As with the aforementioned QP delta modification unit
138a, the QP delta modification unit 1385 modifies the QP

10

15

20

25

30

35

40

45

50

55

60

65

36

variation “mb_qp_delta” of each macroblock decoded by the
macroblock layer decoding unit 1365, re-codes the modified
QP variation, and outputs the re-coded QP variation.

As with the segment boundary detection unit 1394, the
segment boundary detection unit 13956 segments the bit
stream into four segment streams. At this time, the segment
boundary detection unit 13956 provides each of the segment
streams with the QP variation obtained from the QP delta
modification unit 13856. Furthermore, when the segment
boundary detection unit 13956 detects the end of the current
slice in the segment stream and receives the slice header
processing detail notification M1 from the slice header inser-
tion unit 133, it executes the aforementioned slice-end pro-
cessing according to the details indicated by the slice header
processing detail notification M1. In addition, upon comple-
tion of'the slice-end processing, the segment boundary detec-
tion unit 1395 sends the end processing completion notifica-
tion M2 to the slice header insertion unit 133.

Here, detailed descriptions are given of the slice header
insertion unit 133 and the slice data processing units 1344 and
13454. It is to be noted that, in the descriptions given of the
functions and processing operations that are performed by
both the slice data processing units 134a and 1345, the slice
data processing units 134a and 13456 are not differentiated
from each other and referred to as slice data processing units
134.

First, descriptions are given of timings at which the slice
header insertion unit 133 inserts slice headers, and timings at
which the slice data processing unit 134 inserts slice-end
information.

FIG. 11 is an illustration of operations performed by the
slice header insertion unit 133 and the slice data processing
unit 134. Here, slices A and B included in a picture are
allocated to the stream segmentation unit 130 as slices that are
subject to stream segmentation processing.

The slice data processing unit 134 segments the picture
including the slices A and B into MB lines, and sequentially
stores, via the EPB insertion unit 1325, the MB lines from the
beginning side into the four areas (the first area dfl to the
fourth area df4) included in the segment stream buffer 152. At
this time, the slice data processing unit 134 changes the
storage destinations of MB lines on a per MB line basis to the
first area df1, the second area df2, the third area df3, or the
fourth area df4 in this listed order, and repeats this change.

For example, as shown in FIG. 11(a), the slice data pro-
cessing unit 134 stores an MB line Lal of the slice A to the
first area df1 of the segment stream buffer 152, stores a next
MB line Lal of the slice A to the second area df2 of the
segment stream buffer 152, and stores a next MB line La3 of
the slice A to the third area df3 of the segment stream buffer
152. Furthermore, the slice data processing unit 134 stores an
MB line Lb1 ofthe slice B following the slice A into the fourth
area df4 of the segment stream buffer 152.

As a result, an MB line is stored into each of the first area
df1 to the fourth area df4 that are the four areas of the segment
stream buffer 152. Thus, the segment stream buffer 152 is in
a state in which the first area dfl is just ready for storage of a
next MB line of the slice B.

In the case where slice-end information ea is placed imme-
diately after the MB line La3 in the bit stream when the slice
data processing unit 134 tries to store the MB line La3 into the
third area df3, the slice data processing unit 134 stores only
the MB line La3 into the third area df3 without storing the
slice-end information ea. Subsequently, the slice data pro-
cessing unit 134 stores slice-end information ea' correspond-
ing to the slice-end information ea into the third area df3 when
storing an MB line belonging to a new slice into the third area

US 9,307,260 B2

37

df3. Here, a slice header hb of the slice B is stored in advance
in the fourth area df4 by the slice header insertion unit 133 by
the time when the slice data processing unit 134 tries to store
the MB line Lbl into the fourth area df4. In addition, in the
picture, another MB line of the slice A exists before the MB
line Lal of the slice A. Accordingly, no slice header copy of
the slice A is inserted immediately before the MB lines Lal,
La2, and La3 ofthe first area df1, the second area df2, and the
third area df3.

Furthermore, each time a macroblock is outputted, the
segment boundary detection units 1392 and 1395 of the slice
data processing unit 134 determines whether or not all the
macroblocks in a current MB line have been outputted. As a
result, when each of the segment boundary detection units
1394 and 1395 detects that all the macroblocks have been
outputted, it detects a boundary between MB lines (the end of
the MB line). Each of the segment boundary detection units
139a and 13954 stops the macroblock output processing each
time of detecting an MB line boundary, and notifies the slice
header insertion unit 133 of the detection of the MB line
boundary.

Accordingly, when the last macroblock of the MB line is
stored into the segment stream buffer 152 and the segment
stream buffer 152 is in the aforementioned state shown in
FIG. 11(a), the slice header insertion unit 133 receives a
notification of the detection of the MB line boundary from the
segment boundary detection units 1392 and 1395 of the slice
data processing unit 134.

As shown in FIG. 11(5), the slice header insertion unit 133
that received the notification of the detection of the MB line
boundary sends the slice header processing detail notification
M1 to the slice data processing unit 134. The slice header
processing detail notification M1 shows “Output” or “No
output” as information for notifying the slice data processing
unit 134 of whether or not a slice header is to be outputted to
and stored in the segment stream buffer 152 immediately
before a next MB line from the slice data processing unit 134
is stored in the segment stream buffer 152. In short, a slice
header processing detail notification M1 showing “Output” is
a notification urging the slice data processing unit 134 to
perform slice-end processing.

For example, the slice header insertion unit 133 determines
that a slice header copy hb' is outputted to and stored in the
segment stream buffer 152 immediately before a next MB line
Lb2 from the slice data processing unit 134 is stored into the
segment stream buffer 152. At this time, the slice header
insertion unit 133 outputs the slice header processing detail
notification M1 showing “Output” to the slice data processing
unit 134.

In the case where the slice data processing unit 134
receives a slice header processing detail notification M1
showing “Output”, the slice data processing unit 134 gener-
ates slice-end information and stores the slice-end informa-
tion into the segment stream buffer 152, and outputs a slice-
end processing completion notification M2 to the slice header
insertion unit 133. In the other case where the slice data
processing unit 134 receives a slice header processing detail
notification M1 showing “No output™, the slice data process-
ing unit 134 outputs a slice-end processing completion noti-
fication M2 to the slice header insertion unit 133 without
storing slice-end information into the segment stream buffer
152.

For example, as shown in FIG. 11(¢), in the case where the
slice data processing unit 134 receives the slice header pro-
cessing detail notification M1 showing “Output”, the slice
data processing unit 134 generates slice-end information ea',
and stores the slice-end information ea' into the first area df1

5

10

15

20

25

30

35

40

45

50

55

60

65

38

of the segment stream buffer 152. Upon completion of the
storage, the slice data processing unit 134 outputs the slice-
end processing completion notification M2 to the slice header
insertion unit 133.

In the case where the slice header insertion unit 133
receives the slice-end processing completion notification M2
from the slice data processing unit 134 and the slice header
processing detail notification M1 outputted immediately
before shows “Output”, the slice header insertion unit 133
outputs the slice header to store it into the segment stream
buffer 152 via the EPB insertion unit 1325, and subsequently
outputs a slice header processing completion notification M3
to the slice data processing unit 134. In the case where the
slice header processing detail notification M1 outputted
immediately before shows “No output”, the slice header
insertion unit 133 outputs the slice header processing comple-
tion notification M3 to the slice data processing unit 134
without storing the slice header into the segment stream
buffer 152.

For example, in the case where the slice header insertion
unit 133 receives the slice-end processing completion notifi-
cation M2 from the slice data processing unit 134 when the
immediately-outputted slice header processing detail notifi-
cation M1 shows “Output”, the slice header insertion unit 133
generates a slice header copy hb' and stores it into the first area
dfl of the segment stream buffer 152 as shown in FIG. 11(d).
Subsequently, the slice header insertion unit 133 outputs the
slice header processing completion notification M3 to the
slice data processing unit 134.

When each of the segment boundary detection units 139«
and 1395 of the slice data processing unit 134 receives the
slice header processing completion notification M3 from the
slice header insertion unit 133, it re-starts macroblock output
processing that has been stopped to output a next MB line and
store the MB line into the segment stream buffer 152.

For example, as shown in FIG. 11(d), the slice data pro-
cessing unit 134 outputs the next MB line Lb2 and stores it
into the first area df1 of the segment stream buffer 152.

These processes performed by the slice header insertion
unit 133 and the slice data processing unit 134 make it pos-
sible to write the data that is the slice-end information, a slice
header, and a next MB line at the correct MB line boundary in
this listed order, in each of the areas of the segment stream
buffer 152.

FIG. 12 is a block diagram showing a structure of the slice
header insertion unit 133.

It is to be noted that, when the functions and processing
operations that are performed by both the segment boundary
detection units 1394 and 1394 are described with reference to
FIG. 12, the segment boundary detection units 1394 and 1395
are not differentiated from each other and referred to as seg-
ment boundary detection units 139.

The slice header insertion unit 133 includes a NAL type
identification unit 1334, a header insertion counter 1335, a
header address update unit 133¢, and a header buffer 1334.

The NAL type identification unit 133a obtains NAL units
of'the bit stream, and determines, for each obtained NAL unit,
whether or not the NAL unit type shows a slice. Subsequently,
in the case where the NAL type identification unit 133a
determines that the NAL type shows a slice, it notifies the
header buffer 1334 and the header insertion counter 1335 of
the determination.

On receiving the notification from the NAL type identifi-
cation unit 133a, the header buffer 1334 checks whether or
not the NAL unit indicated by the notification includes a slice
header, and when the NAL unit includes a slice header,
extracts the slice header from the NAL unit and stores it. Inthe

US 9,307,260 B2

39

case where a next NAL unit includes a new slice header, the
header buffer 1334 replaces the already-stored slice header
with the new slice header. In short, the header buffer 1334
always stores the latest slice header.

The header insertion counter 1335 counts how many times
the segment boundary detection unit 139 detects an MB line
boundary (end) in the bit stream in order to determine timings
for generating and inserting slice header copies. More spe-
cifically, the header insertion counter 1336 counts values
from O to 4 (the number of the decoding engines 120). On
receiving the notification from the NAL type identification
unit 1334, the header insertion counter 1335 checks whether
or not the NAL unit indicated by the notification includes a
slice header, and when the NAL unit includes a slice header,
resets the count value to 0. When an MB line boundary (the
end of the MB line) is detected, the header insertion counter
1334 increments the count vale by 1. When the count value
reaches 4 and another MB line boundary is detected, the
header insertion counter 1335 maintains the count value at 4
without increment.

In this way, the header insertion counter 1335 updates or
maintains the count value and resets the count value to O when
the MB line boundary is detected and the NAL unit includes
the slice header.

When an MB line boundary is detected, the header inser-
tion counter 1335 outputs a slice header processing detail
notification M1 showing either “Output” or “No output” to
the segment boundary detection unit 139 according to the
count value (including the count value O that is reset by the
slice header immediately after the MB line boundary)
updated by the detection. More specifically, when the count
value immediately after the detection of the MB line bound-
ary is within 0 to 3, the header insertion counter 1335 outputs
a slice header processing detail notification M1 showing
“Output”, and when the count value is 4, outputs a slice
header processing detail notification M1 showing “No out-
put”. Furthermore, the header insertion counter 13354 outputs
a slice header processing detail notification M1 showing
“Output” not only when an MB line boundary is detected but
also when the count value is reset to O.

Furthermore, when the header insertion counter 1335 out-
puts the slice header processing detail notification M1 to the
segment boundary detection unit 139 and receives the slice-
end processing completion notification M2 from the segment
boundary detection unit 139, and in the case where the out-
putted slice header processing detail notification M1 shows
“Output”, the header insertion counter 1335 causes the header
buffer 1334 to output the slice header stored in the header
buffer 1334. Subsequently, the header insertion counter 1335
outputs the slice header processing completion notification
M3 to the segment boundary detection unit 139. When the
slice header is outputted from the header buffer 1334, the slice
header insertion unit 133 selects an area as a storage destina-
tion in the segment stream buffer 152 according to the value
indicated by the MB address information included in the slice
header. Subsequently, the slice header insertion unit 133
stores the slice header in the area as the selected storage
destination. In contrast, when the outputted slice header pro-
cessing detail notification M1 shows “No output”, the header
insertion counter 1335 maintains the slice header in a storage
status without causing the header buffer 1334 to output the
slice header stored in the header buffer 133d. Subsequently,
as described earlier, the header insertion counter 1335 outputs
the slice header processing completion notification M3 to the
segment boundary detection unit 139.

The header address update unit 133¢ updates MB address
information “first_mb_in_slice” of the slice header stored in

10

15

20

25

30

35

40

45

50

55

60

65

40

the header buffer 1334 according to the count value (includ-
ing the count value 0 that is reset by the slice header located
immediately after the MB line boundary) immediately after
the detection of the MB line boundary.

For example, the header address update unit 133¢ does not
update MB address information when the count value n is 0,
and updates MB address information to (“mbposv’+n)x
(“pic_width_in_mbs_minus1”+1) when the count value n is
not 0. In the case where a current picture is coded in MBAFF,
the header address update unit 133¢ updates the MB address
information according to (“mbposv”/2+n)x(“pic_width_
in_mbs_minus1”+1).

FIG. 13 is a diagram showing MB lines and slice headers
assigned to the first area dfl to the fourth area df4 in the
segment stream buffer 152.

For example, the stream segmentation unit 130 reads the
slices A, B, and C of the bit stream stored in the stream buffer
151 in this listed order.

In this case, first, the header buffer 1334 of the slice header
insertion unit 133 extracts the slice header ha from the begin-
ning of the slice A, and stores the slice header ha. At this time,
the header insertion counter 13354 resets the count value to 0.
Since the count value is 0, the header buffer 1334 outputs the
stored slice header ha to store the slice header ha into the first
area df1 of the segment stream buffer 152.

When the slice header ha is outputted from the header
buffer 1334, the slice data processing unit 134 outputs the first
MB line next to the slice header ha of the slice A in the bit
stream, and stores the first MB line in the first area dfl of the
segment stream buffer 152. As a result, data that are the slice
header ha and the first MB line belonging to the slice A are
stored in the first area df1 in this listed order.

When the first MB line is outputted from the slice data
processing unit 134, the aforementioned header insertion
counter 1335 increments the count value to 1. Since the count
value at the end of the first MB line is 1, the header buffer 1334
outputs the stored slice header ha as a slice header copy ha',
and stores the slice header copy ha' to the second area df2 of
the segment stream buffer 152. The MB address information
of the slice header copy ha' is updated by the header address
update unit 133¢.

When the slice header copy ha' is outputted from the header
buffer 133d, the slice data processing unit 134 outputs the
second MB line next to the first MB line in the bit stream, and
stores the second MB line into the second area df2 of the
segment stream buffer 152.

Here, the second MB line includes a plurality of macrob-
locks belonging to the slice A, the slice header hb of the slice
B, and a plurality of macroblocks belonging to the slice B.
First, the segment boundary detection unit 139 of the slice
data processing unit 134 stores all the macroblocks belonging
to the slice A included in the second MB line into the second
area df2. Upon completion of the storage, the segment bound-
ary detection unit 139 temporally stops the macroblock out-
put processing, and waits for reception of the slice header
processing detail notification M1 from the slice header inser-
tion unit 133. At this time, the slice header insertion unit 133
resets the count value to 0 to detect the slice header hb of the
slice B, and sends the slice header processing detail notifica-
tion unit M1 showing “Output” to the segment boundary
detection unit 139. On receiving this slice header processing
detail notification M1, the segment boundary detection unit
139 performs slice-end processing on the end of the slice A in
the second area df2, and sends the slice-end processing
completion notification M2 to the slice header insertion unit
133. On receiving this slice-end processing completion noti-
fication M2, the slice header insertion unit 133 stores the slice

US 9,307,260 B2

41

header hb of the slice B into the second area df2, and sends the
slice header processing completion notification M3 to the
segment boundary detection unit 139. On receiving this slice
header processing completion notification M3, the segment
boundary detection unit 139 re-starts the output processing
that has been stopped, and stores the plurality of macroblocks
belonging to the next slice B included in the second MB line
into the second area df2.

As a result, in the second area df2, data that are the mac-
roblocks each corresponding to a portion of the second MB
line belonging to the slice A, the slice header hb, and the
macroblocks each corresponding to a portion of the second
MB line belonging to the slice B are stored next to the slice
header copy ha' in this listed sequence.

When the second MB line is outputted from the slice data
processing unit 134, the header buffer 133d of the slice header
insertion unit 133 extracts the slice header hc from the begin-
ning ofthe slice C next to the second MB line in the bit stream,
and stores the slice header hc. At this time, the header inser-
tion counter 1335 resets the count value to 0. Since the count
value at the end of the second MB line is 0, the header buffer
133d outputs the stored slice header hc, and stores the slice
header he into the third area df3 of the segment stream buffer
152.

When the slice header hc is outputted from the header
buffer 133d, the slice data processing unit 134 outputs the
third MB line next to the slice header hc of the slice C in the
bit stream, and stores the third MB line in the third area df3 of
the segment stream buffer 152. As a result, the slice header he
and the third MB line belonging to the slice C are stored in the
third area df3 in this listed order.

When the third MB line is outputted from the slice data
processing unit 134, the aforementioned header insertion
counter 1335 increments the count value to 1. Since the count
value at the end of the third MB line is 1, the header buffer
133d outputs the stored slice header he as a slice header copy
hc', and stores the slice header copy he' to the fourth area df4
of the segment stream buffer 152. The MB address informa-
tion of the slice header copy hc' is updated by the header
address update unit 133c.

This processing is repeated to sequentially store data into
the first area df1 to the fourth area df4 in the segment stream
buffer 152. As a result, each of the first segment stream to the
fourth segment stream is stored in a corresponding one of the
first area dfl to the fourth area df4.

Each of FIG. 14A and FIG. 14B is a diagram showing
positions at which the slice-end information is provided.

For example, as shown in FIG. 14A, the picture includes a
slice A and a slice B, and the starting macroblock in the slice
B next to the slice A is at the left end of an MB line. In this
case, the segment boundary detection unit 139 of the slice
data processing unit 134 provides slice-end information ea' of
the slice A at the end of the MB line that is in the slice A and
located four MB lines before the starting MB line in the slice
B, immediately before the slice header hb of the slice B is
outputted from the slice header insertion unit 133. Further-
more, the segment boundary detection unit 139 of the slice
data processing unit 134 provides slice-end information ea' of
the slice A at the end of the MB line that is in the slice A and
located three MB lines before the starting MB line in the slice
B, immediately before the slice header copy hb' of the slice B
is outputted from the slice header insertion unit 133.

In this way, in the case where the starting macroblock in the
slice is located at the left end of an MB line, the slice-end
information ea' is provided at the end of each of the four MB
lines located immediately before the MB line.

10

15

20

25

30

35

40

45

50

55

60

65

42

For example, as shown in FIG. 14B, the picture includes a
slice A and a slice B, and the starting macroblock in the slice
B next to the slice A is located at a position other than the left
end of an MB line. In this case, the segment boundary detec-
tion unit 139 of the slice data processing unit 134 provides
slice-end information ea' of the slice A at the end of the MB
line that is in the slice A and located three MB lines before the
MB line including the slice header hb in the slice B, imme-
diately before the slice header copy hb' of the slice B is
outputted from the slice header insertion unit 133.

In this way, when the starting macroblock in a slice is
located at a position other than the left end of an MB line,
slice-end information ea' is provided at the boundary between
the slices in the MB line and the end of each of the three MB
lines located immediately before the MB line.

Here, a detailed description is given of operations per-
formed by the segment boundary detection unit 139.

FIG. 15 is a flowchart showing operations performed by the
segment boundary detection unit 139.

First, the segment boundary detection unit 139 determines
data (such as macroblocks) to be processed from the begin-
ning side of the bit stream, and outputs the data to store it into
the segment stream buffer 152 (Step S100).

Here, the segment boundary detection unit 139 manages
the addresses of macroblocks (MB address values) to be
outputted. More specifically, when a current macroblock to
be outputted is the starting macroblock in a slice in the bit
stream, the segment boundary detection unit 139 updates the
MB address value of the macroblock to be outputted to a value
indicated by the MB address information included in the slice
header of the slice. Subsequently, the segment boundary
detectionunit 139 increments the MB address value each time
a macroblock succeeding the starting macroblock is output-
ted. Here, MB address values are integers equal to or greater
than 0.

Subsequently, when outputting the macroblock in Step
S100, the segment boundary detection unit 139 selects a
storage-destination area in the segment stream buffer 152
according to the MB address value of the macroblock, and
stores the macroblock into the storage-destination area. More
specifically, in the case where the numbers 1 to 4 are assigned
to the respective four areas included in the segment stream
buffer 152, the segment boundary detection unit 139 selects
m-th (=(MB address value/W) % N+1) area, and stores the
macroblock into the m-th area.

Here, W is shown by, for example,
W="pic_width_in_mbs_minus1”+1, and denotes the number
of macroblocks in the horizontal direction of the picture. N
denotes the total number (N=4) of the decoding engines 120,
and % denotes a remainder when (MB address value/W) is
divided by N.

Next, the segment boundary detection unit 139 determines
whether or not the macroblock outputted in Step S100 is
located at the end (boundary) of the MB line, that is, whether
or not the last macroblock in the MB line has already been
subjected to the macroblock output processing (Step S102).
More specifically, the segment boundary detection unit 139
determines whether or not the MB address value of the mac-
roblock outputted in Step S100 is a value obtained by (“a
multiple of W”-1). When the MB address value is a value
obtained by (“a multiple of W”-1), the last macroblock in the
MB line has already been subjected to the macroblock output
processing, and when the MB address value is not a value
obtained by (“a multiple of W”-1), the last macroblock in the
MB line has not yet been subjected to the macroblock output
processing.

US 9,307,260 B2

43

When the segment boundary detection unit 139 determines
that the last macroblock in the MB line has not yet been
subjected to the macroblock output processing (No in Step
S102), the segment boundary detection unit 139 determines
whether or not data to be processed next remains in the bit
stream, that is, whether or not to finish the output processing
(Step S114). In contrast, when the segment boundary detec-
tion unit 139 determines that the last macroblock in the MB
line has already been subjected to the macroblock output
processing (Yes in Step S102), the segment boundary detec-
tion unit 139 notifies the slice header insertion unit 133 of the
detection of the MB line boundary and stops the output pro-
cessing, and then determines whether or not a slice header
processing detail notification M1 is received from the slice
header insertion unit 133 (Step S104).

When the segment boundary detection unit 139 determines
that no slice header processing detail notification M1 has
been received (No in Step S104), the segment boundary
detection unit 139 waits until a slice header processing detail
notification M1 is received. In contrast, when the segment
boundary detection unit 139 determines that a slice header
processing detail notification M1 has been received (Yes in
Step S104), the segment boundary detection unit 139 deter-
mines whether or not the slice header processing detail noti-
fication M1 shows “Output” (Step S106).

Here, when the segment boundary detection unit 139 deter-
mines that the slice header processing detail notification M1
shows “Output” (Yes in Step S106), the segment boundary
detection unit 139 executes the slice-end processing (Step
S108). In other words, when the bit stream is decoded by
CABAD, the segment boundary detection unit 139 sets “1”to
“end_of_slice_flag” as the slice-end information. In contrast,
when the bit stream is decoded by CAVLD, the segment
boundary detection unit 139 assigns “rbsp_slice_
trailing_bits” as the slice-end information.

After the segment boundary detection unit 139 determines
that the slice header processing detail notification M1 does
not show “Output” (No in Step S106) or after the slice-end
processing is executed in Step S108, the segment boundary
detection unit 139 sends the end processing completion noti-
fication M2 to the slice header insertion unit 133 (Step S110).
Subsequently, the segment boundary detection unit 139 deter-
mines whether or not a slice header processing completion
notification M3 has been received from the slice header inser-
tion unit 133 (Step S112). Here, when the segment boundary
detection unit 139 determines that no slice header processing
completion notification M3 has been received (No in Step
S112), the segment boundary detection unit 139 waits until a
slice header processing completion notification M3 is
received. In contrast, when the segment boundary detection
unit 139 determines that a slice header processing completion
notification M3 has been received (Yes in Step S112), the
segment boundary detection unit 139 determines whether or
not data to be processed next remains in the bit stream, that is,
whether or not to finish the output processing (Step S114).

Here, the segment boundary detection unit 139 finishes the
output processing when it determines to do so (Yes in Step
S114). When the segment boundary detection unit 139 deter-
mines that the output processing should not be finished (No in
Step S114), the segment boundary detection unit 139 outputs
data to be processed next to store the data into the segment
stream buffer 152 (Step S100).

Next, a description is given of operations performed by the
skip run modification unit 137a.

As described earlier, the skip run modification unit 137a
modifies “mb_skip_run” that is MB skip run information.
Such MB skip run information is a code word included in a bit

10

15

20

25

30

35

40

45

50

55

60

65

44

stream coded according to CAVLC, and indicates the number
of consecutive skipped macroblocks (this number is also
referred to as “length”). In addition, in the following descrip-
tions, the length of MB skip run information means the num-
ber of consecutive skipped macroblocks indicated by the MB
skip run information.

Each of FIGS. 16A and 16B is an illustration of MB skip
run information modification processing.

The picture shown in FIG. 16A includes five consecutive
skipped macroblocks at the end of the MB line .2, three
consecutive skipped macroblocks at the beginning of the MB
line L3, two consecutive skipped macroblocks at the end of
the MB line L5, and four consecutive skipped macroblocks at
the beginning of the MB line 1.6. Accordingly, the bit stream
including such picture includes coded MB skip run informa-
tion having a length of 8 (obtained by adding 5 and 3) indi-
cating the number of consecutive skipped macroblocks which
cross the boundary between the MB lines [.2 and L3, and
includes coded MB skip run information having a length of 6
(obtained by adding 2 and 4) indicating the number of con-
secutive skipped macroblocks which cross the boundary
between the MB lines L5 and L6.

In such case, segmenting a picture into MB lines and
assigning the MB lines to separate segment streams changes
the number of macroblocks to be skipped in sequence in each
segment stream. In short, the dependency between the plural-
ity of MB lines based on the MB skip run information indi-
cating the number of consecutive skipped macroblocks which
cross the boundary between the plurality of MB lines is bro-
ken.

The MB lines included in the first segment stream are 1.1
and L5, and two consecutive skipped macroblocks are at the
end of the MB line L5. The MB lines included in the second
segment stream are [.2 and L6, and nine consecutive skipped
macroblocks cross the boundary between [.2 to L.6. The MB
lines included in the third segment stream are [.3 and [.7, and
three consecutive skipped macroblocks are at the beginning
of the MB line [3. The MB lines included in the fourth
segment stream are [.4 and L8, and no skipped macroblocks
exist.

As described above, although the two pieces of MB skip
run information originally included in the bit stream have
lengths of 8 and 6, respectively, there is a need to output MB
skip run information having a length of 2 for the first segment
stream, MB skip run information having a length of 9 for the
second segment stream, and MB skip run information having
a length of 3 for the third segment stream. Stated differently,
in the case where a plurality of MB lines have dependencies
mutually, there is a need to modity the MB skip run informa-
tion such that MB skip run information indicating the number
of consecutive skipped macroblocks which cross the bound-
ary between new plural MB lines create a new dependency
according to the context of the MB lines in each segment
stream.

For this, in the case where a set of skipped macroblocks
corresponding to the MB skip run information decoded by the
slice data layer decoding unit 1354 crosses the boundary
between the plurality of MB lines, the skip run modification
unit 137aq first segments the MB skip run information at the
boundary of the MB lines. Here, segmenting the MB skip run
information at the boundary of the MB lines means segment-
ing the number of the plurality of consecutive skipped mac-
roblocks which cross the boundary between the plurality of
MB lines, and generating a plurality of pieces of MB skip run
information indicating the numbers of skipped macroblocks
for the respective MB lines.

US 9,307,260 B2

45

In the case of the picture shown in FIG. 16A, the skip run
modification unit 137a segments the MB skip run informa-
tion corresponding to a set of eight skipped macroblocks
which cross the boundary between the MB lines [.2 and L3
into MB skip run information corresponding to a set of five
skipped macroblocks in the MB line .2 and MB skip run
information corresponding to a set of three skipped macrob-
locks in the MB line 3. Likewise, the skip run modification
unit 137a segments the MB skip run information correspond-
ing to a set of six skipped macroblocks which cross the
boundary between the MB lines L5 and L6 into MB skip run
information corresponding to a set of two skipped macrob-
locks in the MB line L5 and MB skip run information corre-
sponding to a set of four skipped macroblocks in the MB line
L6.

Next, the skip run modification unit 1374 re-combines the
plurality of pieces of MB skip run information corresponding
to the sets of consecutive skipped macroblocks in the respec-
tive segment streams among the MB skip run information
segments. Here, re-combining the plurality of pieces of MB
skip run information means converting the plurality of pieces
of MB skip run information into a single piece of MB skip run
information indicating the total sum of the numbers indicated
by the plurality of pieces of MB skip run information.

In the case of the picture shown in FIG. 16 A, from among
the sets of skipped macroblocks corresponding to the seg-
ments of MB skip run information, the set of skipped mac-
roblocks having a length of 5 and in the MB line [.2 and the set
of skipped macroblocks having a length of 4 and in the MB
line L6 are consecutive in the second segment stream. For
this, the skip run modification unit 137a combines the two
pieces of MB skip run information corresponding to the two
respective sets of skipped macroblocks, and converts the
combined one into MB skip run information having a length
of 9.

Lastly, the skip run modification unit 137a re-codes the
thus obtained MB skip run information, and outputs the re-
coded MB skip run information.

As described above, the skip run modification unit 137a
can output the MB skip run information having an appropriate
length for each segment stream by segmenting input MB skip
run information at an MB line boundary, and re-combining it
as necessary.

Here, the skip run modification unit 137a re-combines the
consecutive pieces of MB skip run information in each seg-
ment stream as necessary without leaving them as segments.
This is because the H.264/AVC standard does not allow pres-
ence of consecutive pieces of MB skip run information.
Stated differently, the H.264/AVC standard does not allow
representing the number of consecutive skipped macroblocks
using a plurality of pieces of MB skip run information, and
thus the skip run modification information 1374 combines the
plurality of pieces of MB skip run information. In this way,
MB skip run information is modified by the skip run modifi-
cation unit 137a in conformance with the H.264/AVC stan-
dard so that each segment stream is generated in conformance
with the H.264/AVC standard. As a result, the decoding
engine 120 at a later-stage can decode the segment stream
without performing any special processing.

In addition, the picture shown in FIG. 16B includes five
consecutive skipped macroblocks at the end of the MB line
L2, and three consecutive skipped macroblocks at the begin-
ning of the MB line L.6. Accordingly, the bit stream including
such picture includes MB skip run information having a
length of 5 coded for the MB line 1.2, and includes MB skip
run information having a length of 3 coded for the MB line
L6.

10

15

20

25

30

35

40

45

50

55

60

65

46

This picture does not include any MB skip run information
indicating the number of consecutive skipped macroblocks
which cross the boundary between a plurality of MB lines.
Therefore, the skip run modification unit 137a does not need
to segment the MB skip run information at an MB line bound-
ary. However, in the case where this picture is segmented into
MB lines and the respective MB lines are assigned to separate
segment streams, the MB skip run information having a
length of 5 and the MB skip run information having a length
of 3 are consecutively generated in the second segment
stream.

Accordingly, as in this example, even when there is no MB
skip run information indicating the number of consecutive
skipped macroblocks which cross the boundary between a
plurality of MB lines, the skip run modification unit 137«
re-combines a plurality of pieces of MB skip run information
indicating the number of consecutive skipped macroblocks of
one setin each segment stream. Stated differently, the skip run
modification unit 1374 combines the MB skip run informa-
tion having a length of 5 and the MB skip run information
having a length of 3 in the second segment stream to convert
them into a single piece of MB skip run information having a
length of 8.

The skip run modification unit 137a re-codes the thus
obtained MB skip run information, and outputs the re-coded
MB skip run information.

FIG. 17 is a block diagram showing a structure of the skip
run modification unit 137a.

The skip run modification unit 137a includes a skip run
extraction unit 160, a skip run segmentation unit 161, a skip
run accumulation and holing unit 162, an addition unit 163,
and a skip run coding unit 164.

The skip run extraction unit 160 detects and extracts MB
skip run information from a stream to be outputted by the slice
data layer decoding unit. The extracted MB skip run infor-
mation is outputted to the skip run segmentation unit 161, and
the other information is outputted directly to the segment
boundary detection unit 139a.

The skip run segmentation unit 161 determines whether or
not the input MB skip run information indicates the number of
consecutive skipped macroblocks which cross the boundary
between a plurality of MB lines, based on the length of the
MB skip run information and position information of mac-
roblocks having the MB skip run information. Here, in the
case where the input MB skip run information indicates the
number of consecutive skipped macroblocks which cross the
boundary between a plurality of MB lines, the skip run seg-
mentation unit 161 segments the MB skip run information at
the boundary of the MB lines regarding it as a segment bound-
ary. Among the MB skip run information segments, the MB
skip run information indicating the number of skipped mac-
roblocks that exceed an MB line boundary is outputted to the
addition unit 163, and the MB skip run information indicating
the number of skipped macroblocks that do not exceed an MB
line boundary is outputted to the skip run accumulation and
holding unit 162.

Itis to be noted that, MB skip run information may indicate
the number of consecutive skipped macroblocks which cross
the boundary between three or more MB lines. In this case,
two or more MB line boundaries are present in the consecu-
tive skipped macroblocks. Thus, the skip run segmentation
unit 161 repeatedly performs such segmentation regarding
the MB line boundaries as segment boundaries. At this time,
among the MB skip run information segments, the MB skip
run information indicating the number of skipped macrob-
locks that exceed the last MB line boundary is outputted to the

US 9,307,260 B2

47

addition unit 163, and the other MB skip run information is
outputted to the skip run accumulation and holding unit 162.

The skip run accumulation and holding unit 162 receives
the MB skip run information segment outputted by the skip
run segmentation unit 161, and holds the value for each seg-
ment stream as preceding MB skip run information. In other
words, in the case where the skip run accumulation and hold-
ing unit 162 receives the MB skip run information in the first
segment stream, it holds the MB skip run information as the
preceding MB skip run information of the first segment
stream. In the case where the skip run accumulation and
holding unit 162 receives the MB skip run information in the
second segment stream, it holds the MB skip run information
as the preceding MB skip run information of the second
segment stream. In the case where the skip run accumulation
and holding unit 162 receives the MB skip run information in
the third segment stream, it holds the MB skip run informa-
tion as the preceding MB skip run information of the third
segment stream. In the case where the skip run accumulation
and holding unit 162 receives the MB skip run information in
the fourth segment stream, it holds the MB skip run informa-
tion as the preceding MB skip run information of the fourth
segment stream.

At this time, in the case where the skip run accumulation
and holding unit 162 already holds the preceding MB skip run
information, the skip run accumulation and holding unit 162
receives the MB skip run information from the skip run seg-
mentation unit 161, accumulates the received MB skip run
information, and holds, as per segment stream, the value of
the accumulated MB skip run information as new MB skip
run information. Stated differently, the skip run accumulation
and holding unit 162 adds, to the held preceding MB skip run
information, the MB skip run information received from the
skip run segmentation unit 161 for each segment stream.

The addition unit 163 receives MB skip run information
from the skip run segmentation unit 161, and reads the pre-
ceding MB skip run information that corresponds to the seg-
ment stream including the MB skip run information and that
is held in the skip run accumulation and holding unit 162.
Next, the addition unit 163 adds the value of the MB skip run
information received from the skip run segmentation unit 161
and the value of the preceding MB skip run information read
from the skip run accumulation and holding unit 162. The
addition unit 163 then outputs the result as the modified MB
skip run information to the skip run coding unit 164. This
processing re-combines the pieces of MB skip run informa-
tion.

The skip run coding unit 164 re-codes the modified MB
skip run information that is outputted by the addition unit 163
and outputs the re-coded MB skip run information to the
segment boundary detection unit 139a to re-embed the modi-
fied MB skip run information into the stream.

FIG. 18 is a flowchart showing how the skip run modifica-
tion unit 1374 performs a modification operation on the MB
skip run information.

First, the skip run modification unit 137a determines
whether or not a current stream reaches the end of a slice (Step
S200). MB skip run information does not indicate the number
of consecutive skipped macroblocks which cross the bound-
ary between slices. Thus, when the stream reaches the end of
the slice, there is a need to output all the preceding pieces of
MB skip run information held in the skip run modification
unit 137a. When it is determined that the stream reaches the
end of'the slice (Yes in Step S200), a transition to Step S224
is made. This processing will be described in detail later.

On the other hand, when it is determined that the stream
does not reach the end of the slice (No in Step S200), the skip

30

40

45

55

48

run modification unit 1374 checks whether or not MB skip
run information “mb_skip_run” has been obtained (Step
S202). Here, in the case where MB skip run information
“mb_skip_run” has not yet been obtained (No in Step S202),
the skip run modification unit 137a returns to the beginning of
this processing and reads the stream again.

On the other hand, in the case where MB skip run infor-
mation “mb_skip_run” has already been obtained (Yes in
Step S202), the skip run modification unit 137a calculates the
position of the macroblock including the MB skip run infor-
mation in the picture, based on the address information of the
macroblock (Step S204). Here, the skip run modification unit
137a identifies the position of the starting skipped macrob-
lock from among the consecutive skipped macroblocks indi-
cated by the obtained MB skip run information.

After the calculation of the position of the macroblock in
Step S204, the skip run modification unit 137a checks
whether or not the consecutive skipped macroblocks reach an
MB line boundary, based on the position information of the
macroblock and the length of the MB skip run information,
and determines whether or not there is a need to segment the
obtained MB skip run information (Step S206).

More specifically, in the case where
“mb_skip_runz=“PicWidthInMbs-mbposh” is satisfied when
the horizontal position and vertical position of the starting
skipped macroblock are represented as “mbposh” and
mbposv”, respectively and the total number of macroblocks
in the horizontal direction of the picture is represented as
“PicWidthInMbs”, the skip run modification unit 137a deter-
mines that the consecutive skipped macroblocks reach an MB
line boundary.

Here is given a description of the configuration according
to which a stream is segmented in units of an MB line. Even
in the case of segmenting a stream in units of another seg-
ment, the skip run modification unit 137a may determine
whether or not the consecutive skipped macroblocks reach a
segment boundary, based on the position information of the
macroblock and the length of the MB skip run information.

When it is determined that the consecutive skipped mac-
roblocks reach an MB line boundary (Yes in Step S206), the
skip run modification unit 137a advances to Step S216 for
segmenting the MB skip run information. This processing
will be described in detail later.

When it is determined that the consecutive skipped mac-
roblocks do not reach an MB line boundary (No in Step
S206), the skip run modification unit 137a determines
whether or not the MB skip run information is positioned at
the beginning of the MB line (Step S208). Stated differently,
the skip run modification unit 137a determines whether or not
there is a need to combine the MB skip run information with
the preceding MB skip run information.

When it is determined that the MB skip run information is
positioned at the beginning of the MB line (Yes in Step S208),
the skip run modification unit 1374 adds the MB skip run
information “mb_skip_run” and the preceding MB skip run
information “prev_mb_skip_run” to re-combine these pieces
of MB skip run information (Step S210). It is to be noted that
this re-combination of pieces of MB skip run information
must be performed independently on a per-segment stream
basis. More specifically, the preceding MB skip run informa-
tion is held, for each segment stream, in the skip run modifi-
cation unit 1374, and the preceding MB skip run information
added here corresponds to the MB line including the MB skip
run information.

Either when it is determined in Step S208 that MB skip run
information is not located at the beginning of the MB line (No
in Step S208) or after pieces of MB skip run information are

US 9,307,260 B2

49
re-combined in Step S210, the skip run modification unit
137a re-codes the MB skip run information (Step S212). This
is performed to convert the segment streams into segment
streams having a format conforming to the H.264/AVC stan-
dard.

Next, the skip run modification unit 137a outputs the re-
coded MB skip run information to the segment boundary
detection unit 1394 to complete this processing (Step S214).

In addition, when it is determined that consecutive skipped
macroblocks reach the MB line boundary (Yes in Step S206),
the skip run modification unit 1374 segments the MB skip run
information into a first half portion and a second half portion
at the MB line boundary as a segment boundary (Step S216).
It is to be noted that a second half portion may be 0 when
consecutive skipped macroblocks reach the MB line bound-
ary without exceeding the MB line boundary.

Furthermore, the skip run modification unit 137a internally
holds the first half portion as preceding MB skip run infor-
mation “prev_mb_skip_run”, from among the MB skip run
information segments. At this time, when there is preceding
MB skip run information held by the skip run modification
unit 137a, the skip run modification unit 1374 adds the length
of'the held preceding MB skip run information and the length
of the first half portion of the newly generated MB skip run
information, and holds the addition result (Step S218). As
described earlier, the preceding MB skip run information is
held independently for each segment stream, as preceding
MB skip run information of the segment stream correspond-
ing to the MB line including the preceding MB skip run
information.

After the skip run modification unit 137a sets the second
halfportion as new MB skip run information from among the
MB skip run information segments (Step S220), the skip run
modification unit 1374 determines whether or not the length
is 0 (Step S222).

When it is determined that the length of the new MB skip
run information is 0 (Yes in Step S222), the skip run modifi-
cation unit 137a completes the processing determining that
there remains no MB skip run information to be processed.

When it is determined that the length of the new MB skip
run information is not O (No in Step S222), the skip run
modification unit 137a returns to Step S204 determining that
there remains MB skip run information to be processed, and
repeats segmentation and re-combination processing and out-
put processing on MB skip run information. In the case of MB
skip run information of MBs which cross the boundaries of
three or more MB lines, the skip run modification unit 137a
repeats segmentation and re-combination processing on the
MB skip run information so as to accurately perform the
segmentation and re-combination processing.

On the other hand, when it is determined that a slice end is
reached (Yes in Step S200), the preceding MB skip run infor-
mation “prev_mb_skip_run” is replaced by MB skip run
information “mb_skip_run” (Step S224) so as to output the
preceding MB skip run information held by the skip run
modification unit 137a. Next, a transition to Step S212 is
made. The skip run modification unit 1374 re-codes the
replacement MB skip run information, and outputs the re-
coded MB skip run information to the segment boundary
detection unit 1394 to complete the processing (Steps S212 to
S214). It is to be noted that such output of preceding MB skip
run information is performed for all segment streams.

The skip run modification unit 137a repeats this processing
described above until a stream end is reached. In this way, the
skip run modification unit 137a appropriately performs seg-
mentation and re-combination of MB skip run information.

30

40

45

55

50

Next, a detailed description is given of operations per-
formed by the QP delta modification units 138a and 1385. It
is to be noted that, in the descriptions given of the functions
and processing operations that are performed by both the QP
delta modification units 138a and 1385, the QP delta modi-
fication units 138a and 1385 are not differentiated from each
other and referred to as QP delta modification units 138.

The QP delta modification unit 138 modifies QP variation
“mb_qp_delta” that is present basically on a per-macroblock
basis. QP variation is a code word included in a bit stream in
order to decode the QP values that are quantization param-
eters for macroblocks, and indicates the difference in the QP
values of a current macroblock and the macroblock immedi-
ately before the current macroblock.

The QP values are decoded according to the following
Expression (1).

QPy=((QPy przp+mb_qp_delta+52+2*QpBdOffsety)

%(52+QpBdOffsety))-QpBdOfiset; (€8]

Here, QP; denotes a QP value of luminance of a current
macroblock, and QPy. prz;-denotes a QP value of luminance
of'a macroblock immediately before the current macroblock.
QpBdOffset, denotes a value determined depending on a bit
depth of a pixel that constitutes a picture. In the case of a pixel
having an 8-bit depth that is used generally, QpBdOffset,=0
is satisfied. In this case, the above Expression (1) is rewritten
into the following Expression (2).

QPy=((QPy, prep+mb_qp_delta+52)%52)

As shown from the Expression (2), in the case of a pixel
having an 8-bit depth, the QP value is decoded using the QP
variation “mb_qp_delta” such that the QP value falls within
the range of O to 51. Here, “mb_qp_delta” is a value within a
range from -26 to +25.

The QP values that are quantization parameters have a
dependency between macroblocks consecutive in processing
order. However, when there is a slice boundary in the middle
of the consecutive macroblocks, the dependency is broken
when the QP values are decoded. Stated differently, the QP
values that are quantization parameters are initialized by the
QP values of slices at the beginning of the slices. The starting
macroblock in a slice includes, as a QP variation, a coded
difference value between a QP value of the macroblock and
the QP value of the slice.

Each of FIGS. 19A and 19B is an illustration of QP varia-
tion modification processing.

Focusing on a macroblock C in the picture shown in FIG.
19A, a macroblock B is the macroblock that is naturally
processed immediately before the macroblock C. Accord-
ingly, the macroblock C includes, as a QP variation, a differ-
ence value between the QP value of the macroblock B and the
QP value of the macroblock C.

However, segmenting such picture into MB lines and
assigning the respective MB lines to separate segment
streams changes the contexts of the macroblocks at the MB
line boundaries in each segment stream.

In this case, after the stream segmentation, the macroblock
located immediately before the macroblock C in the second
segment stream is changed to a macroblock A. Accordingly,
in the case where the decoding engine 120 decodes the second
segment stream without modification, it is impossible to
accurately decode the QP value of the macroblock C. This is
because the QP value of the macroblock C is decoded as the
value that is obtained by reflecting the QP variation that is the
difference value between the QP value of the macroblock B
and the QP value of the macroblock C on the QP value of the
macroblock A. In short, the dependency between the two MB

US 9,307,260 B2

51

lines based on the QP variation indicating the variation
between macroblocks which cross the boundary between the
two MB lines is broken.

For this, the QP delta modification unit 138 modifies the
QP variation by correcting the change in the contexts of the
macroblocks made in the stream segmentation. More specifi-
cally, in the case where the QP variation that is the variation
between macroblocks which cross the boundary between two
MB lines indicates that the two MB lines have dependencies
mutually, the QP delta modification unit 138 modifies the QP
variation such that the dependencies are changed to new
dependencies according to the new contexts of MB lines in
each segment stream.

A conceivable method of modifying a QP variation
includes a method of decoding (reconstructing) QP values of
all macroblocks first, and then re-calculating the QP varia-
tions, based on the new contexts of the macroblocks after the
stream segmentation. However, this method requires two pro-
cesses of QP value decoding and QP variation calculation,
increasing the amount of processing by the QP delta modifi-
cation unit 138.

For this, in this embodiment, the QP delta modification unit
138 accumulates, for each of segment streams, the QP varia-
tions of macroblocks that are not assigned to a current one of
the segment streams, thereby directly deriving the modified
QP variation without decoding the QP variation.

Here, how to derive the modified QP variation by QP
variation accumulation is described with reference to a dia-
gram.

FIG. 20 is an illustration of accumulation of QP variations.

In the diagram, the horizontal axis represents QP values,
and QP1 to QP4 indicate the QP values of consecutive mac-
roblocks. The diagram also shows “mb_qp_delta” indicating
the difference value of each QP value. The most significant
digit in two-digit numerals that are subscripts added to the
“mb_qp_delta” represents the QP value number correspond-
ing to a preceding macroblock, and the least significant digit
in the two-digit numerals represents the QP value correspond-
ing to the subsequent macroblock. For example, “mb_
qp_delta, ,” represents the difference value of QP1 and QP2.
As shown in the diagram, “mb_qp_delta” represents the dif-
ference value in QP values on an axis on which the minimum
QP value 0 and the maximum QP value 51 are connected in
sequence.

In the normal QP value decoding processing, QP2 is cal-
culated based on QP1 and “mb_qp_delta,,” according to
Expression (2). Likewise, QP3 is calculated based on QP2
and “mb_qgp_delta,;”. Likewise, QP4 is calculated based on
QP3 and “mb_qp_delta,,”.

Here, as shown in the diagram, the total QP variation indi-
cated by the “mb_qp_delta,,”, “mb_qp_delta,;”, and
“mb_qp_delta;,” is equal to the “mb_qp_delta, ,” indicating
the difference value between QP1 and QP4. As clear from
this, accumulating all QP variations “mb_qp_delta” between
the macroblocks makes it possible to calculate the QP varia-
tion between non-adjacent macroblocks.

The accumulation is performed according to the following
Expression (3).

acc_mb_qp_delta=(acc_mb_qp_delta+mb_qp_delta+

52)%52 ©)

Here, “acc_mb_qp_delta” indicates accumulated “mb_
qp_delta”. In this way, accumulating “mb_qp_delta” in a
format according to Expression (2) makes it possible to cal-
culate the total of QP variations in the axis on which the
minimum QP value 0 and the maximum QP value 51 are
connected in sequence as shown in FIG. 20.

40

45

60

52

As a specific example, a description is given of modifica-
tion processing of QP variations of macroblocks in a picture
shown in FIG. 19A. As described earlier, in the second seg-
ment stream after the stream segmentation, the macroblock A
is the macroblock located immediately before the macrob-
lock C. Thus, the macroblock C must include, as the QP
variation, the difference value between the QP value of the
macroblock A and the QP value of the macroblock C.

For this, the QP delta modification unit 138 accumulates
the QP variations of all the macroblocks in the MB lines [.3 to
L5 and the QP variation of the macroblock C. Accumulating
the QP variation of all the macroblocks from the macroblock
A to macroblock C in this way makes it possible to calculate
the modified QP variation that is the difference value between
the QP value of the macroblock A and the QP value of the
macroblock C.

The QP variation calculated here is derived according to
Expression (3), and thus is a value indicating a range from 0
to 51 inclusive. The original QP variation “mb_qp_delta” is a
value ranging from -26 to +25 inclusive. Thus, the QP delta
modification unit 138 modifies the QP variation “mb_
qp_delta” according to the following Expression (4) such that
the range covers =26 to +25.

When acc_mb_gp_delta>25:
mb_gp_delta=acc_mb_gp_delta-52

When acc_mb_gp_delta=25:

mb_gp_delta=acc_mb_qp_delta 4

As indicated above, the processing shown in Expression
(4) may be performed only once after the accumulation of the
QP variations “mb_qp_delta” of all the target macroblocks.
Otherwise, the processing may be performed one by one on
all the target macroblocks.

The description here is given focusing on the macroblock
C. The same processing is performed on all the starting mac-
roblocks in MB lines. For example, as for a macroblock
downwardly adjacent to the macroblock C, a modified QP
variation is derived by accumulating the QP variations of all
the macroblocks in MB lines 1.4 to L6, and reflecting the
accumulation result on the QP variation of the downwardly
adjacent macroblock. This processing is performed indepen-
dently of the processing of other segment streams.

Lastly, the QP delta modification unit 138 re-codes the
modified QP variation obtained in this way, and outputs the
re-coded modified QP variation to the segment boundary
detection unit 139. It is to be noted that the QP delta modifi-
cation unit 138a performs coding according to CAVLC
method, and the QP delta modification unit 1385 performs
coding according to CABAC method.

As described above, the QP delta modification unit 138 is
capable of setting an appropriate QP variation for each seg-
ment stream by modifying an input QP variation to match the
context of macroblocks in the segment stream. As a result, the
decoding engine 120 at a later-stage can decode the segment
stream without performing any special processing.

FIG. 19B shows an exemplary case where a slice is seg-
mented at the boundary between an MB line 1.4 and an MB
line L5. In this case, MB lines L1 to L4 are included in the
slice A, and MB lines L5 to L8 are included in the slice B.

At this time, in the second segment stream, the macroblock
A and the macroblock C are consecutive as in FIG. 19A.
However, these macroblocks are included in different slices,
and thus there is no dependency between the macroblock A
and macroblock C. In the second segment stream, the mac-
roblock C is the starting macroblock of'the slice B. Thus, the

US 9,307,260 B2

53

QP variation of the macroblock C must indicate the difference
value between the QP value of the macroblock C and the slice
QP value of the slice B.

More specifically, the QP delta modification unit 138 is
capable of calculating the difference value based on the slice
QP value of the slice B by accumulating the QP variations of
the macroblocks included in the slice B from among the
macroblocks between the macroblock A and the macroblock
C. However, it is impossible to determine whether or not a
slice is actually segmented until the beginning of the slice B
is reached.

For this, the QP delta modification unit 138 accumulates
the QP variations of all the macroblocks between the mac-
roblock A and the macroblock C, and resets the accumulated
QP variation “acc_mb_qp_delta” to O at the time of starting
processing of the starting macroblock of the slice B. In this
way, the QP delta modification unit 138 can accumulate the
QP variations of only the macroblocks in the slice B, and
accurately calculate the modified QP variation of the macrob-
lock C.

Lastly, the QP delta modification unit 138 re-codes the
modified QP variation obtained in this way, and outputs the
re-coded modified QP variation to the segment boundary
detection unit 139.

FIG. 21 is a flowchart showing QP variation modification
processing by the QP delta modification unit 138.

When macroblock processing is started, the QP delta modi-
fication unit 138 firstly calculates the position of a current
macroblock in the picture, based on the address information
of the current macroblock (Step S300).

Next, the QP delta modification unit 138 determines
whether or not the current macroblock is the starting macrob-
lock of a slice (Step S302).

When it is determined that the current macroblock is the
starting macroblock of the slice (Yes in Step S302), the QP
delta modification unit 138 resets, to 0, the accumulated QP
variation “acc_mb_qp_delta” corresponding to all the seg-
ment streams (Step S304). In the case where a slice is seg-
mented in the middle, this processing makes it possible to
accurately derive the QP variation, based on the slice QP
value. Here, whether to reset an accumulated QP variation is
determined depending on whether a current macroblock is the
starting macroblock of a slice. However, it is only necessary
to reset an accumulated QP variation at the beginning of a
slice, and thus it is also possible to reset an accumulated QP
variation when a slice header appears.

When it is determined that a current macroblock is not the
starting macroblock of a slice in Step S302 (No in Step S302)
or after reset of an accumulated QP variation in Step S304, the
QP delta modification unit 138 determines a segment stream
output destination of the current macroblock, based on the
position information of the current macroblock calculated in
Step S300 (Step S306).

When it is determined that the output destination of the
current macroblock is the first segment stream in Step S306,
the QP delta modification unit 138 accumulates the QP varia-
tion of the current macroblock on the accumulated QP varia-
tions of the second, third, and fourth segment streams,
according to Expression (3) (Step S308).

When it is determined that the output destination of the
current macroblock is the second segment stream in Step
S306, the QP delta modification unit 138 accumulates the QP
variation of the current macroblock on the accumulated QP
variations of the first, third, and fourth segment streams,
according to Expression (3) (Step S310).

When it is determined that the output destination of the
current macroblock is the third segment stream in Step S306,

5

10

15

20

25

30

35

40

45

50

55

60

65

54
the QP delta modification unit 138 accumulates the QP varia-
tion of the current macroblock on the accumulated QP varia-
tions of the first, second, and fourth segment streams, accord-
ing to Expression (3) (Step S312).

When it is determined that the output destination of the
current macroblock is the fourth segment stream in Step
S306, the QP delta modification unit 138 accumulates the QP
variation of the current macroblock on the accumulated QP
variations of the first, second, and third segment streams,
according to Expression (3) (Step S314).

In this way, the QP variations of the segment streams other
than the segment stream that is the output destination of the
current macroblock are accumulated in Steps S308 to S314.
This means that the QP variations of the macroblocks
included in the three MB lines that are not assigned to the
current segment stream are accumulated. With this process-
ing, the QP delta modification unit 138 can accurately correct
the difference value between the QP values of the macrob-
locks located before and after the three MB lines that are not
assigned to the current segment stream.

After the QP variation accumulation in Steps S308, S310,
S312, and S314, the QP delta modification unit 138 deter-
mines whether or not a current macroblock is positioned at the
beginning of an MB line, based on the position information of
the macroblock calculated in Step S300 (Step S316). Here, a
stream is segmented in units of an MB line. Likewise, even in
the case of segmenting a stream in units of another segment,
the QP delta modification unit 138 may determine whether or
not a current macroblock is the starting macroblock in the
segmentation unit, based on the position information of the
macroblock.

When it is determined that a current macroblock is posi-
tioned at the beginning of an MB line (Yes in Step S316), the
QP delta modification unit 138 accumulates the QP variation
of the current macroblock on the accumulated QP variations
corresponding to the segment stream including the current
macroblock, according to Expression (3). Next, the QP delta
modification unit 138 modifies the obtained accumulated QP
variation into a range between -26 and +25 inclusive accord-
ing to Expression (4), and replaces the obtained accumulated
QP variation as the modified accumulated QP variation of the
current macroblock. Furthermore, the QP delta modification
unit 138 resets, to 0, the accumulated QP variation in relation
to the segment stream including the current macroblock (Step
S318). In this way, in Step S318, the QP variation is modified
by reflecting the accumulated QP variation on the QP varia-
tion of the starting macroblock in the MB line.

When it is determined that a current macroblock is not
positioned at the beginning of an MB line (No in Step S316)
or after modification of the QP variation of the current mac-
roblock in Step S318, the QP delta modification unit 138
re-codes the QP variation of the current macroblock (Step
S320). This is performed to convert the segment streams into
segment streams having a format conforming to the H.264/
AVC standard.

Next, the QP delta modification unit 138 outputs the re-
coded QP variation to the segment boundary detection unit
139 to complete the processing (Step S322).

As described above, the QP delta modification unit 138
re-codes and outputs QP variations of macroblocks other than
the starting macroblock in each MB line without modifying
the QP variations, and re-codes and outputs a QP variation of
the starting macroblock in each MB line after modifying the
QP variation of the starting macroblock.

In this way, in the image decoding apparatus 100 in this
embodiment, each of the coded pictures is segmented into a
plurality of MB lines (structural units), and each of the plu-

US 9,307,260 B2

55

rality of MB lines is assigned as a portion of a segment stream
to a corresponding one of the N decoding engines 120 and
decoded. This enables the N decoding engines 120 to equally
share the load of decoding processing, with it being possible
to appropriately execute parallel decoding processing. For
example, even in the case where an H.264/AVC coded picture
is composed of one slice, the coded picture is segmented into
a plurality of MB lines, so that the load of decoding the slice
is not placed on one decoding engine 120 but equally shared
by the N decoding engines 120.

Here, when a coded picture is segmented into a plurality of
MB lines, a slice which crosses the boundary between a
plurality of MB lines may be segmented into a plurality of
slice portions (for example, each of the MB lines L1 to L6 or
a set of top six macroblocks in the MB line .7 shown in FIG.
3), and the respective slice portions may be assigned to mutu-
ally different segment streams. In other words, the segment
stream includes slice portion groups each of which is com-
posed of at least one slice portion that is a segment of a slice
(examples of the groups includes MB lines L2 and L6
included in the second segment stream shown in FIG. 3),
instead of including the whole slice in the coded picture. In
addition, the slice portion group (such as MB lines .2 and L.6)
may not include a slice header indicating the beginning of the
slice and slice-end information indicating the end.

Furthermore, a plurality of MB lines may have a depen-
dency indicated by a predetermined code word included in the
bit stream. For example, in H.264/AVC, a plurality of MB
lines may have a dependency indicated by MB skip run infor-
mation “mb_skip_run” and QP variation “mb_qp_delta”. In
the case where such bit stream is segmented into a plurality of
MB lines and the segments are assigned to mutually different
segment streams, the dependency between the MB lines can-
not be maintained accurately.

For this, in this embodiment, the stream segmentation unit
130 reconstructs the slice portion group as a new slice. As a
result, the decoding engine 120 that decodes the segment
stream including the slice portion group can easily recognize
the slice portion group as a new slice and decode it appropri-
ately without performing any special processing for appro-
priately recognizing and decoding the slice portion group. In
short, this embodiment eliminates the need to provide each of
the N decoding engines 120 with a function or a structure for
such special processing, thereby simplifying the structure of
the whole image decoding apparatus 100.

Furthermore, the image decoding apparatus 100 in this
embodiment is capable of accelerating decoding processing
compared to the image decoding apparatus in Patent Litera-
ture 1. More specifically, the image decoding apparatus in
Patent Literature 1 does not perform, in parallel, variable
length decoding and deblocking filtering on a bit stream. In
other words, the image decoding apparatus in Patent Litera-
ture 1 does not appropriately segment the bit stream. In con-
trast, the image decoding apparatus 100 in this embodiment
appropriately segments a bit stream into a plurality of seg-
ment streams, thereby allowing the respective decoding
engines 120 to execute, in parallel, variable length decoding
and deblocking filtering in the same manner as the decoding
engine 1421 shown in FIG. 49. As a result, the image decod-
ing apparatus in this embodiment can accelerate decoding
processing.

Moreover, the image decoding apparatus in this embodi-
ment can reduce the capacity necessary for the intermediate
data buffer, as compared with the image decoding apparatus
in Patent Literature 3. In detail, in the image decoding appa-
ratus in Patent Literature 3, variable length code included in a
bit stream is decoded in parallel on a picture basis using the

10

20

25

40

45

50

56

plurality of variable length decoding processing units and the
decoded data is stored in the intermediate data buffer, and the
image decoding processing units at the subsequent stage per-
form parallel decoding processing on the decoded data on an
MB line basis. That is, the image decoding apparatus in Patent
Literature 3 stores the variable length code in the intermediate
data buffer in a decoded state, and so requires a larger capacity
for the intermediate data buffer. In particular, in order to
enable the plurality of variable length decoding processing
units to efficiently operate in parallel on a picture basis, the
intermediate data buffer needs to have a capacity for storing a
plurality of pictures. Such an intermediate data buffer is enor-
mous in size. In the image decoding apparatus 100 in this
embodiment, on the other hand, the segment streams are
generated in a state where variable length code is not decoded,
with it being possible to save the capacity of the segment
stream buffer 152.

Furthermore, the image decoding apparatus 100 in this
embodiment executes one of high-resolution decoding, high-
speed decoding, and mufti-channel decoding, according to
the aforementioned mode information to be inputted to the M
stream segmentation units 130.

FIG. 22A is an illustration of high-resolution decoding.
FIG. 22B is an illustration of high-speed decoding. FIG. 22C
is an illustration of mufti-channel decoding.

As shown in FIG. 22 A, upon obtaining the mode informa-
tion instructing to execute high-resolution decoding, the M
stream segmentation units 130 and the stream segmentation
controlunit 140 in the image decoding apparatus 100 segment
a 4k2k bit stream into four segment streams as described
above, and cause the decoding engines 120 to decode the four
segment streams.

For example, each of the four decoding engines 120 has
processing performance sufficient to decode two channels of
HD images (1920x1088 pixels, 60i), and thus the image
decoding apparatus 100 can process the 4k2k image (3840x
2160 pixels, 60p) in real time.

As shown in FIG. 22B, upon obtaining the mode informa-
tion instructing to execute high-speed decoding, the M stream
segmentation units 130 and the stream segmentation control
unit 140 in the image decoding apparatus 100 segment an HD
bit stream into four segment streams as described above, and
cause the decoding engines 120 to decode the four segment
streams.

For example, each of the four decoding engines 120 has
processing performance sufficient to decode two channels of
HD images (1920x1088 pixels, 60i), and thus the image
decoding apparatus 100 can process the HD image at a speed
8 (4x2) times faster.

As shown in FIG. 22C, upon obtaining the mode informa-
tion instructing to execute mufti-channel decoding, the M
stream segmentation units 130 and the stream segmentation
control unit 140 in the image decoding apparatus 100 cause
the decoding engines 120 to decode a plurality of HD bit
streams, without segmenting each of the plurality of HD bit
streams. In the case of mufti-channel decoding, each of the M
stream segmentation units 130 does not perform copying and
insertion of various NAL units such as an SPS, a PPS, and a
slice, and only allocates the bit streams (channels) to corre-
sponding areas in the segment stream buffer 152.

For example, each of the four decoding engines 120 has
processing performance sufficient to decode two channels of
HD images (1920x1088 pixels, 60i), and thus the image
decoding apparatus 100 can simultaneously decode eight
channels at maximum, that is, eight HD bit streams. Further-
more, in the case of decoding channels (bit streams) equal to
or less than the maximum number of channels, the image

US 9,307,260 B2

57

decoding apparatus 100 can lower the clock frequency of
each decoding engine 120, thereby being able to reduce its
power consumption. For example, in the case of decoding
four channels, the image decoding apparatus 100 causes each
of the first and second decoding engines 120 to decode two
channels, while stopping the remaining third and fourth
decoding engines 120. Otherwise, the image decoding appa-
ratus 100 causes the first decoding engine 120 to the fourth
decoding engine 120 to operate at a clock frequency reduced
to Ya.

In this way, the image decoding apparatus 100 in this
embodiment switches decoding processing between high-
resolution decoding, high-speed decoding, and mufti-chan-
nel decoding according to mode information, thereby being
able to increase user friendliness. The high-resolution decod-
ing and the high-speed decoding performed in the image
decoding apparatus 100 are the same in terms of involving
segmenting a bit stream into four segment streams and decod-
ing them in parallel. In short, the high-resolution decoding
and the high-speed decoding are different only in the resolu-
tions and frame rates (4k2k or HD) of the bit streams to be
decoded. Accordingly, the image decoding apparatus 100
switches decoding processing between (i) high-resolution
decoding or high-speed decoding and (ii) mufti-channel
decoding according to mode information, and further
switches decoding processing between high-resolution
decoding and high-speed decoding according to the resolu-
tions and frame rates of the bit streams.

Embodiment 2

Next, Embodiment 2 according to the present invention is
described in detail.

The image decoding apparatus 100 in Embodiment 1
modifies the dependencies between consecutive MB lines in
a bit stream before stream segmentation by modifying MB
skip run information and QP variations such that the depen-
dencies are modified into dependencies according to the con-
text of the MB lines in each segment stream.

Here, there is a case where a bit stream includes a macrob-
lock whose QP variation is not included. The macroblock
whose QP variation is not included corresponds to a non-
quantized macroblock. More specifically, an exemplary mac-
roblock whose QP variation is not included in the H.264/AVC
standard is: (1) a skipped macroblock, (2) a non-compressed
macroblock (I_PCM), or (3) a macroblock for which an intra-
prediction mode other than “Intra 16x16” is selected, and
whose “coded_block_pattern™ is O (that is, no non-zero coef-
ficient is included).

In the case where such macroblock whose QP variation is
not included is present at the beginning of an MB line, the
image decoding apparatus 100 in Embodiment 1 cannot
modify the QP variation due to absence of the QP variation to
be modified.

For this, an image decoding apparatus 200 in Embodiment
2 is characterized by inserting a QP variation into a segment
stream including a current macroblock whose QP variation is
not included when generating a plurality of segment streams
from a bit stream including the current macroblock at the
beginning of an MB line. With this, the image decoding
apparatus 200 can appropriately set the QP variation based on
the new context in each segment stream.

Here, when such QP variation is inserted in a segment
stream, it is impossible to use one piece of MB skip run
information to show the number of consecutive skipped mac-
roblocks which cross the boundary between MB lines
because the QP variation is present between the MB lines. For

10

25

30

40

45

50

58

this, the image decoding apparatus 200 in Embodiment 2 is
further characterized by not re-combining MB skip run infor-
mation.

The image decoding apparatus 200 in this embodiment is
described below with reference to the drawings.

FIG. 23 is ablock diagram showing a structure of an image
decoding apparatus according to Embodiment 2 of the
present invention. In FIG. 23, the same structural elements as
in FIG. 1 are assigned with the same reference signs, and the
descriptions therefor are not repeated here.

As shown in FIG. 23, the image decoding apparatus 200
includes a decoder 210 and the memory 150.

As with the decoder 110, the decoder 210 generates
decoded image data by reading the bit stream stored in the
stream buffer 151 in the memory 150 and decoding the bit
stream, and stores the decoded image data into the frame
memory 153 in the memory 150. This decoder 210 includes
the stream segmentation control unit 140, M stream segmen-
tation units (first to M-th stream segmentation units) 230, and
N decoding engines (first to N-th decoding engines) 220.

Each of the M stream segmentation units 230 executes the
same processing as performed by each of the M stream seg-
mentation units 130, except for MB skip run information
modification processing and QP variation modification pro-
cessing. The stream segmentation unit 230 will be described
in detail later, with reference to FIG. 24.

The N decoding engines 220 correspond to N decoding
units which decode respective N segment streams in parallel.
Each of the N decoding engines 220 executes the same pro-
cessing as performed by each of the N decoding engines 120
except for calculating a QP value using an accumulated QP
variation inserted into the segment stream by the stream seg-
mentation unit 230.

Next, a detailed description is given of a structure and
operations of the stream segmentation unit 230.

FIG. 24 is a block diagram showing the structure of the
stream segmentation unit 230.

The stream segmentation unit 230 is different from the
stream segmentation unit 130 shown in FIG. 10 in that a skip
run modification unit 237a and QP delta insertion units 238«
and 2386 are included instead of the skip run modification
unit 1374 and the QP delta modification units 1384 and 1385.

The processing management unit 130m obtains mode
information and allocation control information and, accord-
ing to the obtained information, controls the other compo-
nents included in the stream segmentation unit 230, as in
Embodiment 1. For example, the processing management
unit 130m controls the selector Sct to output the segment
stream generated from the SPS, the PPS, or the processing
target slice or not to output the segment stream so that the
stream segmentation processing as shown in FIGS. 6A to 8 is
carried out.

In the case where MB skip run information indicates the
number of consecutive macroblocks which cross the bound-
ary between at least two MB lines to be assigned to mutually
different segment streams, the skip run modification unit
237a segments MB skip run information such that the MB
skip run information indicates the numbers of blocks for each
of'the Mb lines, as with the skip run modification unit 137a.

However, unlike the skip run modification unit 137a, the
skip run modification unit 237a does not combine a plurality
of pieces of MB skip run information into a single piece of
MB skip run information in each segment stream.

In the case where a QP variation indicates the variation
between macroblocks which cross the boundary between two
MB lines, the QP delta insertion units 238a and 2385 calcu-
late the QP variation based on the new context of the mac-

US 9,307,260 B2

59

roblocks in each of the segment streams, as with the QP delta
modification units 1384 and 1385.

Here, the QP delta insertion units 238a and 2385 output the
calculated QP variation as a new QP variation to the segment
boundary detection unit 139. With this, new QP variation is
inserted into (set in) each segment stream. Stated differently,
the QP delta insertion units 2384 and 2385 do not modify the
QP variation included in each macroblock.

Furthermore, the segment boundary detection unit 139«
provides each of the segment streams with MB skip run
information obtained from the skip run modification unit
237a and the accumulated QP variation obtained from the QP
delta insertion unit 238a.

The segment boundary detection unit 1395 provides each
of the segment streams with the accumulated QP variation
obtained from the QP delta insertion unit 2385.

Next, operations by the skip run modification unit 237a and
the QP delta insertion units 2384 and 2385 are described in
detail with a focus on differences from the operations by the
skip run modification unit 137« and the QP delta modification
units 138a and 1385.

It is to be noted that, in the descriptions given of the func-
tions and processing operations that are performed by both
the QP delta insertion units 238a and 2384, the QP delta
insertion units 238a and 2385 are not differentiated from each
other and referred to as QP delta insertion units 238.

FIG. 25 is an illustration of MB skip run information modi-
fication processing and QP variation insertion processing.

The picture shown in FIG. 25 includes five consecutive
skipped macroblocks at the end of an MB line L2, three
consecutive skipped macroblocks at the beginning of an MB
line L3, two consecutive skipped macroblocks at the end of an
MB line L5, and four consecutive skipped macroblocks at the
beginning of an MB line L6.

As described earlier, a skipped macroblock does not
include any QP variation. Accordingly, the macroblock C
includes, as a QP variation, a difference value between the QP
value of the macroblock B and the QP value of the macrob-
lock C.

However, segmenting such picture into MB lines and
assigning the respective MB lines to separate segment
streams changes the contexts of the macroblocks at the MB
line boundaries in each segment stream.

In this case, after the stream segmentation, the macroblock
located immediately before the macroblock C in the second
segment stream is changed to a macroblock A including the
QP variation. Accordingly, in the case where the decoding
engine 220 decodes the second segment stream without
modification, it is impossible to accurately decode the QP
value ofthe macroblock C. This is because the QP value of the
macroblock C is decoded as the value that is obtained by
reflecting the QP variation that is the difference value
between the QP value of the macroblock B and the QP value
of the macroblock C on the QP value of the macroblock A.

In view of this, the QP delta insertion unit 238 outputs a
new QP variation to be inserted into an MB line to the seg-
ment boundary detection unit 139, so as to correct a change in
context of macroblocks caused by stream segmentation. That
is, in the case where there is a dependency between two MB
lines based on a QP variation indicating a difference in QP
value between blocks which cross the boundary between the
two MB lines, the QP delta insertion unit 238 outputs a new
QP variation to be inserted at the beginning of the MB line to
the segment boundary detection unit 139, so as to break the
dependency.

Inthis embodiment, QP variations are inserted to the begin-
ning of MB lines. However, such QP variations are not always

10

20

25

30

35

40

45

50

55

60

65

60

inserted to the beginning of MB lines. For example, it is also
possible to insert QP variations to other places such as within
starting macroblocks in MB lines.

As in Embodiment 1, examples of conceivable methods of
calculating QP variations to be inserted to the beginning of
MB lines include: a method of calculating QP variations by
reconstructing the QP values of all the macroblocks; and a
method of calculating QP variations by accumulating the QP
variations of the macroblocks other than a current segment
stream. This embodiment describes the latter calculation
method.

The QP delta insertion unit 238 calculates accumulated QP
variations obtained by accumulating the QP variations of all
the macroblocks including the QP variations included in the
MB lines 1.3 to L5. Furthermore, the QP delta insertion unit
238 re-codes the calculated accumulated QP variations, and
outputs the re-coded accumulated QP variations as new QP
variations to the segment boundary detection unit 139. As a
result, as shown in FIG. 25, the accumulated QP variation is
inserted to the beginning of the MB line L6. In other words,
the accumulated QP variation and the QP variation originally
included in the macroblock C are set in the second segment
stream. It is to be noted that the detailed calculation method of
accumulated QP variations is the same as in Embodiment 1,
and thus is not repeated here.

The description given here focuses on the MB line L.6. The
QP delta insertion unit 238 outputs, to the segment boundary
detection unit 139, coded accumulated QP variations to be
inserted to the beginning of the other MB lines. For example,
the QP delta insertion unit 238 calculates accumulated QP
variations obtained by accumulating the QP variations of all
the macroblocks including the QP variations included in the
MB lines 1.4 to L6, as an accumulated QP variation to be
inserted to the beginning of the MB line L7. Next, the QP
delta insertion unit 238 codes the calculated accumulated QP
variation, and outputs the coded accumulated QP variation to
the segment boundary detection unit 139. This processing is
performed independently of the processing of other segment
streams.

In this way, in this embodiment, accumulated QP varia-
tions are inserted to the beginning of MB lines, and thus there
are no consecutive skipped macroblocks which cross the
boundary between the MB lines. Stated differently, the skip
run modification unit 237a does not combine a plurality of
pieces of MB skip run information, unlike the skip run modi-
fication unit 1374 in Embodiment 1.

For example, in the case of a picture shown in FIG. 25, the
skip run modification unit 237a segments MB skip run infor-
mation corresponding to eight skipped macroblocks which
cross the boundary between the MB lines [.2 and L3 into MB
skip run information corresponding to five skipped macrob-
locks included in the MB line [.2 and MB skip run informa-
tion corresponding to three skipped macroblocks included in
the MB line .3, as with the skip run modification unit 137a.
Likewise, the skip run modification unit 237a segments MB
skip run information corresponding to six skipped macrob-
locks which cross the boundary between the MB lines L5 and
L6 into MB skip run information corresponding to two
skipped macroblocks included in the MB line .5 and MB skip
run information corresponding to four skipped macroblocks
included in the MB line L6.

Here, as described earlier, an accumulated QP variation as
a new QP variation is inserted between the five consecutive
skipped macroblocks in the MB line [.2 and the four consecu-
tive skipped macroblocks in the MB line L6. For this, the skip
run modification unit 2374 does not re-combine the MB skip
run information corresponding to the five consecutive

US 9,307,260 B2

61
skipped macroblocks in the MB line [.2 and the MB skip run
information corresponding to the four consecutive skipped
macroblocks in the MB line L6.

It is to be noted that the skip run modification unit 237«
re-codes the thus obtained MB skip run information, and
outputs the re-coded MB skip run information, as with the
skip run modification unit 137a.

FIG. 26 is a block diagram showing a structure of the skip
run modification unit 2374a. In FIG. 26, the same structural
elements as in FIG. 17 are assigned with the same reference
signs, and descriptions therefor are not repeated here.

The skip run modification unit 237« includes the skip run
extraction unit 160, the skip run segmentation unit 161, and
the skip run coding unit 164. In other words, the skip run
modification unit 2374 is the same in structure as the skip run
modification unit 137¢ in Embodiment 1 except for not
including the skip run accumulation and holding unit 162 and
the addition unit 163. The skip run segmentation unit 161
outputs the segmented MB skip run information to the skip
run coding unit 164.

FIG. 27 is a flowchart showing how the skip run modifica-
tion unit 237a performs a modification operation on the MB
skip run information. In FIG. 27, the same steps as in FIG. 18
are assigned with the same reference signs, and descriptions
therefor are not repeated here.

First, the skip run modification unit 2374 checks whether
or not MB skip run information “mb_skip_run” has been
obtained (Step S202). Stated differently, the skip run modifi-
cation unit 237a does not determine whether or not a cur-
rently-being processed stream reaches the end of a slice. This
is because the skip run modification unit 2374 does not hold
preceding MB skip run information, and does not need to
output preceding MB skip run information when the cur-
rently-being processed stream reaches the end of a slice. This
is described in detail later.

Here, in the case where MB skip run information “mb_ski-
p_run” has not yet been obtained (No in Step S202), the skip
run modification unit 237a returns to the beginning of this
processing and reads the stream again.

On the other hand, in the case where MB skip run infor-
mation “mb_skip_run” has already been obtained (Yes in
Step S202), the skip run modification unit 237a calculates the
position of the macroblock including the MB skip run infor-
mation in the picture, based on the address information of the
macroblock (Step S204).

Next, as in Embodiment 1, the skip run modification unit
237a determines whether or not the obtained MB skip run
information must be segmented (Step S206).

When it is determined that consecutive skipped macrob-
locks reach an MB line boundary (Yes in Step S206), the skip
run modification unit 237a advances to Step S216 for seg-
menting the MB skip run information. This processing will be
described in detail later.

On the other hand, when it is determined that consecutive
skipped macroblocks do not reach an MB line boundary (No
in Step S206), the skip run modification unit 2374 re-codes
the MB skip run information (Step S212). Here, Steps S208
and S210 shown in FIG. 18 are not executed. This is because
the skip run modification unit 237« in this embodiment does
not re-combine MB skip run information.

Next, the skip run modification unit 237« outputs the re-
coded MB skip run information to the segment boundary
detection unit 1394 to complete this processing (Step S214).

In addition, when it is determined that consecutive skipped
macroblocks reach the MB line boundary (Yes in Step S206),
the skip run modification unit 2374 segments the MB skip run

10

15

20

25

30

35

40

45

50

55

60

65

62

information into a first half portion and a second half portion
at the MB line boundary as a segment boundary (Step S216),
as in Embodiment 1.

Furthermore, the skip run modification unit 2374 re-codes
the first half portion as the MB skip run information among
the MB skip run information segments (Step S250). Next, the
skip run modification unit 237a outputs the re-coded MB skip
run information to the segment boundary detection unit 139«
(Step S252). This embodiment does not require re-combina-
tion of pieces of MB skip run information, and thus does not
hold preceding MB skip run information unlike in Embodi-
ment 1.

After the skip run modification unit 2374 sets the second
halfportion as new MB skip run information from among the
MB skip run information segments (Step S220), the skip run
modification unit 237a determines whether or not the length
is 0 (Step S222).

When it is determined that the length of the new MB skip
run information is 0 (Yes in Step S222), the skip run modifi-
cation unit 237a completes the processing determining that
there remains no MB skip run information to be processed.

When it is determined that the length of the new MB skip
run information is not O (No in Step S222), the skip run
modification unit 2374 returns to Step S204 determining that
there remains MB skip run information to be processed, and
repeats segmentation and output of MB skip run information.

The skip run modification unit 237a repeats this processing
described above until a stream end is reached. In this way, the
skip run modification unit 237a appropriately performs seg-
mentation of MB skip run information.

FIG. 28 is a flowchart showing how the QP delta insertion
unit 238 performs insertion processing on the accumulated
QP variations. In FIG. 28, the same steps as in FIG. 21 are
assigned with the same reference signs, and descriptions
therefor are not repeated here.

When macroblock processing is started, the QP delta inser-
tion unit 238 executes the processing of Steps S300 to S316 as
in Embodiment 1.

When it is determined that a current macroblock is located
at the beginning of an MB line (Yes in Step S316), the QP
delta insertion unit 238 codes an accumulated QP variation
corresponding to the segment stream to which the current
macroblock is assigned, and outputs the coded accumulated
QP variation to the segment boundary detection unit 139
(Step S352). Stated differently, the QP delta insertion unit 238
outputs the accumulated QP variation before outputting the
MB information.

Next, the QP delta insertion unit 238 resets, to 0, the accu-
mulated QP variation in relation to the segment stream
including the current macroblock (Step S354). Next, the QP
delta insertion unit 238 outputs the MB information to the
segment boundary detection unit 139 to complete the pro-
cessing (Step S356). In the case where the MB information
includes the QP variation, the QP delta insertion unit 238
outputs the QP variation without modification.

On the other hand, when it is determined that a current
macroblock is not located at the beginning of an MB line (No
in Step S316), the QP delta insertion unit 238 outputs the MB
information to the segment boundary detection unit 139 to
complete the processing (Step S350). In the case where the
MB information includes the QP variation, the QP delta inser-
tion unit 238 outputs the MB information without modifying
the QP variation.

As described above, the QP delta insertion unit 238 out-
puts, to the segment boundary detection unit 139, the new QP

US 9,307,260 B2

63

variation (accumulated QP variation) accumulated to be
inserted to the beginning of the MB line and the QP variations
included in the bit stream.

In this way, the image decoding apparatus 200 in this
embodiment is capable of equalizing the decoding processing
loads on the N decoding engines 220 and thereby allowing the
N decoding engines 220 to appropriately execute parallel
decoding processing, as in the image decoding apparatus 100
in Embodiment 1.

In particular, even in the case where the macroblock
located at the beginning of an MB line does not include any
QP variation, the image decoding apparatus 200 in this
embodiment is capable of inserting new QP variations to the
MB line, and thereby obtaining accurate QP values when
parallel decoding processing is performed.

The image decoding apparatus 200 in this embodiment
selectively executes one of the high-resolution decoding,
high-speed decoding, and mufti-channel decoding shown in
FIGS. 22A to 22C, according to mode information inputted to
the M stream segmentation units 230, as with the image
decoding device 100 in Embodiment 1.

In this way, the image decoding apparatus 200 in this
embodiment switches decoding processing between the high-
resolution decoding, the high-speed decoding, and the mufti-
channel decoding according to the mode information, thereby
being able to increase user friendliness.

Embodiment 3

The following describes Embodiment 3 of the present
invention in detail.

FIG. 29 is ablock diagram showing a structure of an image
coding apparatus in Embodiment 3 of the present invention.

An image coding apparatus 300 in this embodiment is
capable of appropriately executing parallel coding processing
by a simple structure, and includes an encoder 310 and a
memory 360.

The memory 360 has areas for storing original image data
inputted to the encoder 310 and intermediate data generated
by the encoder 310.

In detail, the memory 360 includes a frame memory 361, a
segment stream buffer 362, and M partial stream buffers (first
to M-th partial stream buffers) 363.

The frame memory 361 is used to store original image data
of a picture to be coded, and also store N locally decoded
image data segments generated by N encoding engines (cod-
ing units) 320. The segment stream buffer 362 is used to store
N segment streams generated by the encoder 310, as the
above-mentioned intermediate data. The segment stream
buffer 362 has areas that are each assigned to a different one
of'the N encoding engines 320. The M partial stream buffers
363 are each used to store a partial stream (combined coding
area) generated by the encoder 310.

The encoder 310 reads the original image data stored in the
frame memory 361 in the memory 360 and codes the original
image data, to generate and output a bit stream. The encoder
310 includes the N encoding engines (first to N-th encoding
engines) 320, M stream combination units (first to M-th
stream combination units) 330, a stream combination control
unit 340, and a multiplexing unit 350.

Each encoding engine 320 in this embodiment has a pro-
cessing capability of coding HD images (1920x1088 pixels,
60i) corresponding to two channels.

The N encoding engines 320 obtain mode information and,
according to the mode information, read the original image
data of the picture to be coded on an MB line basis or an MB
line pair basis and code the read data in parallel. That is, the

10

15

20

25

30

35

40

45

50

55

60

65

64

image coding apparatus 300 in this embodiment segments the
picture into a plurality of MB lines or a plurality of MB line
pairs and assigns coding processing of the plurality of MB
lines or the plurality of MB lines pairs to the N encoding
engines 320 to thereby achieve parallel coding processing, as
with the image decoding apparatus 100 in Embodiment 1.

Moreover, when coding a macroblock by intra-picture pre-
diction, each of the N encoding engines 320 obtains, from an
encoding engine 320 that has coded and locally decoded
macroblocks located left above, above, and right above the
coding target macroblock, information of these locally
decoded macroblocks as adjacent MB information. Having
obtained the adjacent MB information, the encoding engine
320 codes the coding target macroblock using the obtained
adjacent MB information. In addition, when performing, for
example, deblocking filtering processing, motion vector pre-
diction processing, or variable length coding processing, too,
the encoding engine 320 obtains information of coded and
locally decoded macroblocks located left above, above, and
right above the processing target macroblock as adjacent MB
information and performs the processing, in the same manner
as mentioned above.

Itis assumed in this embodiment that N=4, for simplicity’s
sake. In this embodiment, when coding of macroblocks
located left, left above, above, and right above the coding
target macroblock ends, each of the N (N=4) encoding
engines 320 starts coding the coding target macroblock using
adjacent MB information of these macroblocks. Thus, the
first to fourth encoding engines 320 code macroblocks
located at different horizontal positions in the respective MB
lines in parallel.

FIG. 30A is a diagram showing coding order in the case of
coding a picture without using MBAFF.

In the case of coding a picture without using MBAFF, the
first encoding engine 320 codes the Oth MB line, the second
encoding engine 320 codes the first MB line, the third encod-
ing engine 320 codes the second MB line, and the fourth
encoding engine 320 codes the third MB line. Note that the
k-th (k is an integer equal to or greater than 0) MB line is an
MB line at the k-th ordinal position from the top of the picture.
For example, the Oth MB line is an MB line at the Oth ordinal
position from the top of the picture.

When the coding of the picture starts, first the first encod-
ing engine 320 starts coding the Oth MB line. Upon comple-
tion of the coding of two leftmost macroblocks in the O0th MB
line, the second encoding engine 320 starts coding a leftmost
macroblock in the first MB line. Upon completion of the
coding of two leftmost macroblocks in the first MB line, the
third encoding engine 320 starts coding a leftmost macrob-
lock in the second MB line. Upon completion of the coding of
two leftmost macroblocks in the second MB line, the fourth
encoding engine 320 starts coding a leftmost macroblock in
the third MB line.

Accordingly, the (k+1)-th MB line is coded from leftmost
to rightmost macroblocks, with a delay of two macroblocks
from the k-th MB line.

FIG. 30B is a diagram showing coding order in the case of
coding a picture using MBAFF.

In the case of coding a picture using MBAFF, the first
encoding engine 320 codes the Oth MB line pair, the second
encoding engine 320 codes the first MB line pair, the third
encoding engine 320 codes the second MB line pair, and the
fourth encoding engine 320 codes the third MB line pair, as in
the case of coding a picture without using MBAFF. Note that
the k-th (k is an integer equal to or greater than 0) MB line pair
is a structural unit composed of a pair of MB lines at the k-th
ordinal position from the top of the picture. For example, the

US 9,307,260 B2

65

Oth MB line pair is a structural unit composed of a pair of MB
lines at the Oth ordinal position from the top of the picture.

When the coding of the picture starts, first the first encod-
ing engine 320 starts coding the Oth MB line pair. Upon
completion of the coding of two leftmost macroblock pairs in
the Oth MB line pair, the second encoding engine 320 starts
coding an upper lefimost macroblock in the first MB line pair.
Upon completion of the coding of two leftmost macroblock
pairs in the first MB line pair, the third encoding engine 320
starts coding an upper leftmost macroblock in the second MB
line pair. Upon completion of the coding of two leftmost
macroblock pairs in the second MB line pair, the fourth
encoding engine 320 starts coding an upper leftmost macrob-
lock in the third MB line pair.

Accordingly, the (k+1)-th MB line pair is coded from left-
most to rightmost macroblock pairs, with a delay of two
macroblock pairs from the k-th MB line pair.

In each of the case of coding a picture without using
MBAFF and the case of coding a picture using MBAFF, the
(k+1)-th MB line or the (k+1)-th MB line pair may be coded
with a delay of at least two macroblocks from the k-th MB
line or at least two macroblock pairs from the k-th MB line
pair. That is, the (k+1)-th MB line or the (k+1)-th MB line pair
may be coded with a delay ofthree or more macroblocks from
the k-th MB line or three or more macroblock pairs from the
k-th MB line pair. For example, in the case of coding the
(k+1)-th MB line or the (k+1)-th MB line pair with a delay of
two macroblocks from the k-th MB line or two macroblock
pairs from the k-th MB line pair, the time required to code the
picture can be minimized. In the case of coding the (k+1)-th
MB line or the (k+1)-th MB line pair with a delay of three or
more macroblocks from the k-th MB line or three or more
macroblock pairs from the k-th MB line pair, on the other
hand, the time required to code the picture increases with the
delay.

In the case where CAVLC is used as the coding method, the
N encoding engines 320 perform coding processing including
variable length coding processing. In the case where CABAC
is used as the coding method, the N encoding engines 320
perform only code word binarization without performing
arithmetic coding in variable length coding processing. This
is because, in arithmetic coding processing by CABAC, the N
encoding engines 320 have dependencies over a plurality of
MB lines, which makes it impossible to realize parallel pro-
cessing. Arithmetic coding processing not performed by the
N encoding engines 320 is performed by the M stream com-
bination units 330 described later. Note here that, even in the
case where CABAC is used as the coding method, the N
encoding engines 320 add dummy start code per slice and also
insert an EPB (emulation prevention byte), to enable the
stream combination units 330 at the subsequent stage to cor-
rectly recognize slices.

Data coded by the N encoding engines 320 in this way is
stored in the segment stream buffer 362 as N segment
streams.

The stream combination control unit 340 obtains mode
information. According to the obtained mode information,
the stream combination control unit 340 notifies each stream
combination unit 330 of allocation control information for
allocating stream combination processing on a predetermined
unit basis, in order to make the M stream combination units
330 to be equal in stream combination processing amount. In
this embodiment, it is assumed that the stream combination
control unit 340 allocates stream combination processing to
the M stream combination units 330 on a slice basis. That is,
for each generation target slice to be included in a bit stream,
the stream combination control unit 340 causes one of the M

10

15

20

25

30

35

40

45

50

55

60

65

66

stream combination units 330 to execute stream combination
processing for the slice, by notifying the allocation control
information. For example, the allocation control information
indicates a slice number for identifying the slice that is subject
to stream combination processing. Moreover, based on the
result of allocating stream combination processing to the M
stream combination units 330 on a slice basis, the stream
combination control unit 340 notifies the multiplexing unit
350 of selection information indicating from which of the M
partial stream buffers 363 the multiplexing unit 350 is to
obtain a partial stream.

Each of the M stream combination units 330 obtains the
mode information and the allocation control information.
According to the obtained mode information and allocation
control information, each of the M stream combination units
330 extracts N segment streams (first to N-th segment
streams) included in a slice to be processed from the segment
stream buffer 362, and combines the extracted N segment
streams to thereby reconstruct the slice as a predetermined
unit. That is, the stream combination unit 330 in this embodi-
ment segments, for each slice allocated by the stream combi-
nation control unit 340, each of the N segment streams con-
stituting the slice into a plurality of MB lines. The stream
combination unit 330 then assigns the plurality of MB lines
sequentially to the generation target slice to combine the N
segment streams into one stream, thereby reconstructing the
slice. The process of reconstructing one slice (combined cod-
ing area) from a slice (partial area) that is included in each of
the N segment streams generated by the N encoding engines
320 and corresponds to the original slice in the original image
data is the above-mentioned stream combination processing.
In the stream combination processing, in the case where a
slice (partial area) is composed of a plurality of coded MB
lines (structural units), the slice is segmented into the plural-
ity of coded MB lines and the plurality of coded MB lines are
re-combined together, that is, the plurality of coded MB lines
are sequentially assigned to the generation target slice as
described earlier, thereby generating the above-mentioned
one slice (combined coding area). The M stream combination
units 330 execute the stream combination processing in par-
allel. Hence, the M stream combination units 330 each gen-
erate a reconstructed slice as a partial stream.

Note that each of the M stream combination units 330
extracts the slice notified by the allocation control informa-
tion, by searching each ofthe N segment streams stored in the
segment stream buffer 362 for start code.

In the case where CABAC is used as the coding method,
each of the M stream combination units 330 reconstructs the
slice while performing arithmetic coding on the N segment
streams.

The M stream combination units 330 store such recon-
structed slices in the respective M partial stream buffers 363,
as M partial streams (first to M-th partial streams). In detail,
the first stream combination unit 330 stores the first partial
stream in the first partial stream buffer 363, the second stream
combination unit 330 stores the second partial stream in the
second partial stream buffer 363, and the M-th stream com-
bination unit 330 stores the M-th partial stream in the M-th
partial stream buffer 363.

Upon generating the partial stream with the slice being
treated as the predetermined unit, each of the M stream com-
bination units 330 outputs the slice accompanied by header
information such as an SPS, a PPS, and a slice header.

The multiplexing unit 350 obtains the mode information
and the selection information. According to the obtained
mode information and selection information, the multiplex-
ing unit 350 reads each partial stream to be processed from

US 9,307,260 B2

67

any of the M partial stream buffers 363, and sequentially
outputs the read partial streams, thereby multiplexing the M
partial streams. Thus, the multiplexing unit 350 generates and
outputs one bit stream.

For example, in the case of being notified to obtain the
partial stream from the first partial stream buffer 363 by the
selection information from the stream combination control
unit 340, the multiplexing unit 350 reads the first partial
stream from the first partial stream buffer 363. In the case of
being notified to obtain the partial stream from the M-th
partial stream buffer 363 by the selection information from
the stream combination control unit 340, the multiplexing
unit 350 reads the M-th partial stream from the M-th partial
stream buffer 363. The multiplexing unit 350 multiplexes the
partial streams read from the M partial stream buffers 363 in
this way, and outputs the multiplexing result as a bit stream.

A characteristic feature of the image coding apparatus 300
in this embodiment lies in that the stream combination unit
330 segments a slice included in each of the N segment
streams into a plurality of MB lines and combines the plural-
ity of MB lines to reconstruct one new slice. The slice recon-
struction involves slice header insertion processing, slice-end
processing, skip run modification processing, and QP delta
modification processing.

FIG. 31 is an illustration of slice header insertion process-
ing and slice-end processing.

An example where one slice is constructed from MB lines
0 to 5 of a picture and coded is shown in FIG. 31.

The N encoding engines 320 code different MB lines
included in the slice, in parallel. Thus, the N encoding engines
320 each code data composed of one or more MB lines, as a
single slice. In detail, the first encoding engine 320 codes data
composed of the MB lines 0 and 4, as a single slice. The
second encoding engine 320 codes data composed of the MB
lines 1 and 5, as a single slice. The third encoding engine 320
codes data composed of the MB line 2, as a single slice. The
fourth encoding engine 320 codes data composed of the MB
line 3, as a single slice.

As shown in FIGS. 31(a) to 31(d), the slice included in the
segment stream generated by each of the N encoding engines
320 as a result contains data of one or more MB lines and
slice-end information. In detail, the first segment stream con-
tains data of the MB lines 0 and 4 and slice-end information
ecl. The second segment stream contains data of the MB lines
1 and 5 and slice-end information ec2. The third segment
stream contains data of the MB line 2 and slice-end informa-
tion ec3. The fourth segment stream contains data of the MB
line 3 and slice-end information ec4.

The stream combination unit 330 combines the slices
included respectively in the first to fourth segment streams to
reconstruct a new slice, thus generating a partial stream (com-
bined coding area).

In detail, the stream combination unit 330 provides an
appropriate slice header for the new slice, and assigns it to the
partial stream. Next, the stream combination unit 330 extracts
the data of the MB line O from the first segment stream, and
assigns the MB line 0 to the partial stream. The stream com-
bination unit 330 also extracts the data of the MB line 1 from
the second segment stream, and assigns the MB line 1 to the
partial stream.

Following this, the stream combination unit 330 extracts
the data of the MB line 2 from the third segment stream.
Though the data of the MB line 2 is accompanied by the
slice-end information ec3, the new slice to be reconstructed
continues to the MB line 5, and accordingly the stream com-
bination unit 330 removes the slice-end information ec3, and
assigns the MB line 2 to the partial stream so that the slice

10

15

20

25

30

35

40

45

50

55

60

65

68

continues after the MB line 2. Likewise, the stream combi-
nation unit 330 extracts the data of the MB line 3 and the
slice-end information ec4 from the fourth segment stream,
removes the slice-end information ec4, and assigns the MB
line 3 to the partial stream so that the slice continues after the
MB line 3. The stream combination unit 330 equally extracts
the data of the MB line 4 and the slice-end information ecl
from the first segment stream, removes the slice-end infor-
mation ecl, and assigns the MB line 4 to the partial stream so
that the slice continues after the MB line 4.

Lastly, the stream combination unit 330 extracts the data of
the MB line 5 and the slice-end information ec2 from the
second segment stream. The stream combination unit 330
assigns the MB line 5 to the partial stream, removes the
slice-end information ec2, generates appropriate slice-end
information ecc for the reconstructed new slice, and assigns
the slice-end information ecc to the partial stream.

Here, the appropriate slice-end information ecc for the
reconstructed new slice is newly provided because there is a
possibility that a bit position of the end of the new slice
reconstructed by combining the MB lines is different from a
bit position of the end of the slice in the original segment
stream. The stream combination unit 330 sets the end of the
slice at a byte boundary, by providing the appropriate slice-
end information to the reconstructed new slice.

By performing appropriate slice header insertion and slice-
end processing on the slice and combining MB line data
extracted from each segment stream in this way, the stream
combination unit 330 can reconstruct the slice in conform-
ance with the format of the bit stream outputted from the
image coding apparatus 300.

The following describes slice allocation processing by the
stream combination control unit 340.

As mentioned above, the image coding apparatus 300 in
this embodiment includes the N encoding engines 320 and the
M stream combination units 330, and performs parallel cod-
ing processing on moving picture data (original image data).
By enabling parallel processing in the whole system in this
way, it is possible to achieve an improvement in performance
of the whole coding processing.

Each of the M stream combination units 330 combines, as
a predetermined unit, slices of segment streams respectively
generated by the N encoding engines 320, to reconstruct a
new slice. Here, since the size of each slice is not uniform, the
processing amount varies between the M stream combination
units 330 depending on the slice.

Even in a system where all slices are uniform in size, the
target of processing is a bit stream, and so the processing
amount depends on the amount of code of each slice. In a
typical moving picture coding scheme, a bit stream is variable
length coded, where the amount of code varies according to
data. Besides, slices in H.264/AVC have types such as I slice,
P slice, and B slice. There is a tendency that the I slice on
which intra-picture coding is performed has a large amount of
code whereas the P slice and the B slice on which not only
intra-picture coding but also inter-picture coding is per-
formed have a small amount of code. Thus, the amount of
code of each coded slice included in a bit stream is not
uniform but can vary widely. Accordingly, if slices of segment
streams respectively generated by the N encoding engines
320 are simply allocated sequentially to the M stream com-
bination units 330, the processing amount of each stream
combination unit 330 is not equal, making it impossible to
sufficiently achieve the advantageous effect of improving
processing performance by parallelization.

US 9,307,260 B2

69

In view of this, the stream combination control unit 340
allocates slices to the stream combination units 330 so that the
processing amount of each stream combination unit 330 is
equal.

Each of FIGS. 32A and 32B is an illustration of a specific
example of slice allocation processing by the stream combi-
nation control unit 340. It is assumed in this embodiment that
M=2, for simplicity’s sake.

FIG. 32A is a diagram showing an example of N segment
streams generated by the N encoding engines 320. The N
segment streams (first to fourth segment streams) in this
example are made up of slice data (slice) constituting each
picture. A picture 0 is composed of only a slice 0. A picture 1
is composed of slices 1 and 2. A picture 2 is composed of
slices 3 and 4.

FIG. 32B is a diagram showing processing of allocating the
series of slices by the stream combination control unit 340.
Upon processing start, each stream combination unit 330
holds a slice number of a slice to be processed. As an example,
the first stream combination unit 330 holds SN1=0 as an
initial value of a slice number of a slice to be processed, while
the second stream combination unit 330 holds SN2=0 as an
initial value of a slice number of a slice to be processed.

The stream combination control unit 340 notifies each
stream combination unit 330 to reconstruct a slice by sending
allocation control information, according to the processing
state of the stream combination unit 330. The stream combi-
nation control unit 340 also instructs each stream combina-
tion unit 330 to add header information such as an SPS and a
PPS as necessary.

Upon being notified to reconstruct a slice, the stream com-
bination unit 330 reads a plurality of segment streams includ-
ing the target slice from the segment stream buffer 362, seg-
ments each of the read plurality of segment streams into MB
lines, and re-combines the MB lines while adding a slice
header and the like, to reconstruct a new slice. This series of
operations by the stream combination unit 330 is hereafter
referred to as stream combination processing.

At time t0, the first stream combination unit 330 and the
second stream combination unit 330 are both not engaged in
stream combination processing, and accordingly the stream
combination control unit 340 sends allocation control infor-
mation to notify the first stream combination unit 330 to
perform stream combination of the slice 0, instruct the first
stream combination unit 330 to add an SPS that is to be
present at the beginning of the stream, and also instruct the
first stream combination unit 330 to add a PPS 0 that is to be
present at the beginning of the picture 0. The stream combi-
nation control unit 340 also sends allocation control informa-
tion to notify the second stream combination unit 330 to
perform stream combination of the slice 1, and instruct the
second stream combination unit 330 to add a PPS 1 that is to
be present at the beginning of the picture 1. In this embodi-
ment, the allocation control information indicates, for
example, a slice number of a slice that is subject to stream
combination processing and also indicates whether or not to
add an SPS or a PPS.

Upon being notified to perform stream combination of the
slice 0 from the stream combination control unit 340 by the
allocation control information, the first stream combination
unit 330 compares the slice number of the slice notified for
stream combination, with the value of SN1 held as the slice
number of the slice to be processed. At this time, both slice
numbers are 0, i.e. the two slice numbers match each other, so
that the first stream combination unit 330 performs stream
combination processing on a slice inputted first.

10

15

20

25

30

35

40

45

50

55

60

65

70

In detail, the first stream combination unit 330 first gener-
ates and adds the SPS and the PPS 0. The first stream com-
bination unit 330 then performs stream combination process-
ing on the slice 0, and outputs the new slice 0 in the generated
partial stream to the first partial stream bufter 363.

On the other hand, upon being notified to perform stream
combination of the slice 1 from the stream combination con-
trol unit 340 by the allocation control information, the second
stream combination unit 330 compares the slice number of
the slice notified for stream combination, with the value of
SN2 held as the slice number of the slice to be processed. At
this time, the slice number of the slice notified for stream
combination is 1 whereas the value of SN2 is 0, with there
being a difference of 1. Accordingly, the second stream com-
bination unit 330 skips processing for one inputted slice, and
performs stream combination processing on a slice inputted
second. That is, the second stream combination unit 330 skips
stream combination processing for the number of slices cor-
responding to the difference.

In detail, the second stream combination unit 330 first skips
stream combination processing on the inputted slice 0. Note
that the stream combination processing skip is carried out by
searching for start code that accompanies the segment stream.
Having skipped the stream combination processing of the
slice 0, the second stream combination unit 330 increments
SN2 to SN2=1.

Following this, since the slice number of the slice notified
for stream combination matches the value of SN2, the second
stream combination unit 330 generates and adds the PPS 1,
performs stream combination processing on the slice 1, and
outputs the new slice 1 of the generated partial stream to the
second partial stream buffer 363.

At time t1, the stream combination processing of the slice
1 by the second stream combination unit 330 ends, and
accordingly the second stream combination unit 330 notifies
the stream combination control unit 340 of the processing
completion and also information of the partial stream output-
ted to the second partial stream buffer 363. In detail, the
second stream combination unit 330 notifies the number of
NAL units for the PPS 1 and the slice 1 actually outputted to
the second partial stream buffer 363.

Here, the second stream combination unit 330 notifies the
stream combination control unit 340 that two NAL units have
been processed in total for the PPS1 and the slice 1. At the
same time, having completed the stream combination pro-
cessing of the slice 1, the second stream combination unit 330
increments SN2 to SN2=2. Upon being notified of the pro-
cessing completion from the second stream combination unit
330, the stream combination control unit 340 notifies the
second stream combination unit 330 to perform stream com-
bination of the slice 2.

Upon being notified to perform stream combination of the
slice 2 from the stream combination control unit 340, the
second stream combination unit 330 compares the slice num-
ber of the slice notified for stream combination, with the value
of SN2 held as the slice number of the slice to be processed.
At this time, both slice numbers are 2, i.e. the two slice
numbers match each other, so that the second stream combi-
nation unit 330 performs stream combination processing on a
slice inputted first. In detail, the second stream combination
unit 330 performs stream combination processing on the slice
2.

At time t2, the stream combination processing of the slice
0 by the first stream combination unit 330 ends, and accord-
ingly the first stream combination unit 330 notifies the stream
combination control unit 340 of the processing completion
and also information of the partial stream outputted to the first

US 9,307,260 B2

71

partial stream buffer 363, namely, “3” as the number of NAL
units for the SPS, the PPS 0, and the slice 0. At the same time,
having completed the stream combination processing of the
slice 0, the first stream combination unit 330 increments SN1
to SN1=1. Upon being notified of the processing completion
from the first stream combination unit 330, the stream com-
bination control unit 340 notifies the first stream combination
unit 330 to perform stream combination of the slice 3, and
also instructs the first stream combination unit 330 to add a
PPS 2 that is to be present at the beginning of the picture 2.

Upon being notified to perform stream combination of the
slice 3 from the stream combination control unit 340, the first
stream combination unit 330 compares the slice number of
the slice notified for stream combination, with the value of
SN1 held as the slice number of the slice to be processed. At
this time, the slice number of the slice notified for stream
combination is 3 whereas the value of SN1 is 1, with there
being a difference of 2. Accordingly, the first stream combi-
nation unit 330 skips processing for two inputted slices, and
performs stream combination processing on a slice inputted
third.

In detail, the first stream combination unit 330 first skips
stream combination processing on the inputted slice 1. Hav-
ing skipped the stream combination processing of the slice 1,
the first stream combination unit 330 increments SN1 to
SN1=2. Next, the slice 2 is inputted to the first stream com-
bination unit 330. Since the slice number of the slice notified
for stream combination still does not match the value of SN1,
however, the first stream combination unit 330 skips process-
ing on the inputted slice 2, too. Having skipped the processing
of the slice 2, the first stream combination unit 330 incre-
ments SN1 to SN1=3.

Following this, since the slice number of the slice notified
for stream combination matches the value of SN1, the first
stream combination unit 330 generates and adds the PPS 2,
performs stream combination processing on the slice 3, and
outputs the new slice 3 of the generated partial stream to the
first partial stream buffer 363.

At time t3, the stream combination processing of the slice
2 by the second stream combination unit 330 ends, and
accordingly the second stream combination unit 330 notifies
the stream combination control unit 340 of the processing
completion and also information of the partial stream output-
ted to the second partial stream buffer 363, namely, “1” as the
number of NAL units for the slice 2. At the same time, having
completed the stream combination processing of the slice 2,
the second stream combination unit 330 increments SN2 to
SN2=3. Upon being notified of the processing completion
from the second stream combination unit 330, the stream
combination control unit 340 notifies the second stream com-
bination unit 330 to perform stream combination of the slice
4.

Upon being notified to perform stream combination of the
slice 4 from the stream combination control unit 340, the
second stream combination unit 330 compares the slice num-
ber of the slice notified for stream combination, with the value
of SN2 held as the slice number of the slice to be processed.
At this time, the slice number of the slice notified for stream
combination is 4 whereas the value of SN2 is 3, with there
being a difference of 1. Accordingly, the second stream com-
bination unit 330 skips processing for one inputted slice, and
performs stream combination processing on a slice inputted
second.

In detail, the second stream combination unit 330 first skips
processing on the inputted slice 3. Having skipped the pro-
cessing of the slice 3, the second stream combination unit 330
increments SN2 to SN2=4.

10

15

20

25

30

35

40

45

50

55

60

65

72

Next, since the slice number of the slice notified for stream
combination matches the value of SN2, the second stream
combination unit 330 performs stream combination process-
ing on the slice 4, and outputs the new slice 4 of the generated
partial stream to the second partial stream bufter 363.

At time t4, the stream combination processing of the slice
3 by the first stream combination unit 330 ends, and accord-
ingly the first stream combination unit 330 notifies the stream
combination control unit 340 of the processing completion
and also information of the partial stream outputted to the first
partial stream buffer 363, namely, “2” as the number of NAL
units for the PPS2 and the slice 3. At the same time, having
completed the stream combination processing of the slice 3,
the first stream combination unit 330 increments SN1 to
SN1=4.

Likewise, at time t5, the stream combination processing of
the slice 4 by the second stream combination unit 330 ends,
and accordingly the second stream combination unit 330
notifies the stream combination control unit 340 of the pro-
cessing completion and also information of the partial stream
outputted to the second partial stream buffer 363, namely, “1”
as the number of NAL units for the slice 4. At the same time,
having completed the stream combination processing of the
slice 4, the second stream combination unit 330 increments
SN2 to SN2=5.

As described above, the stream combination control unit
340 sequentially allocates stream combination processing of
slices to the stream combination units 330 that have com-
pleted processing. This enables the stream combination units
330 to be equal in processing amount.

FIG. 33 is a diagram showing states of the partial stream
buffers 363 in the case of performing slice allocation and
stream combination processing shown in FIG. 32B.

A partial stream corresponding to the slices 0 and 3 is
stored in the first partial stream buffer 363. Meanwhile, a
partial stream corresponding to the slices 1, 2, and 4 is stored
in the second partial stream buffer 363. Thus, the slices are
stored in the two partial stream buffers 363 in a distributed
manner according to the processing amount of each stream
combination unit 330, and so the storage order of the slices is
not uniform.

Accordingly, to enable the multiplexing unit 350 to obtain
the partial stream in the same order of slices as in the segment
streams prior to stream combination processing, the stream
combination control unit 340 notifies the multiplexing unit
350 of selection information indicating from which of the M
partial stream buffers 363 the partial stream is to be obtained.

FIG. 34 is a diagram showing an example of a format of
selection information in the case of performing slice alloca-
tion and stream combination processing shown in FIG. 32B.

As shown in FIG. 34, the selection information includes
partial stream buffer information and NAL unit number infor-
mation for each slice, and is generated each time the stream
combination control unit 340 performs slice allocation pro-
cessing. The partial stream buffer information indicates
whether the stream combination control unit 340 allocates the
slice to the first stream combination unit 330 or the second
stream combination unit 330. That is, the partial stream buffer
information indicates the partial stream buffer in which the
new slice (the partial stream including the new slice) gener-
ated as a result of stream combination processing by the
stream combination unit 330 is stored. The NAL unit number
information indicates the number of NAL units outputted
when the stream combination unit 330 processes the slice,
and is notified from the stream combination unit 330 to the
stream combination control unit 340 upon completion of the
processing by the stream combination unit 330.

US 9,307,260 B2

73

The selection information generated by the stream combi-
nation control unit 340 is notified to the multiplexing unit 350
and stored in, for example, a FIFO (first-in first-out) memory
in the multiplexing unit 350. The selection information stored
in the FIFO memory is read by the multiplexing unit 350 in
notification order, and used for stream obtainment from the
partial stream buffers 363.

In detail, the multiplexing unit 350 first reads the partial
stream buffer information=1 and the NAL unit number infor-
mation=3, as the selection information of the slice 0. Accord-
ing to the selection information of the slice 0, the multiplex-
ing unit 350 obtains three NAL units (the SPS, the PPS 0, and
the slice 0) from the first partial stream buffer 363. The
multiplexing unit 350 then reads the partial stream buffer
information=2 and the NAL unit number information=2, as
the selection information of the slice 1. According to the
selection information of the slice 1, the multiplexing unit 350
obtains two NAL units (the PPS 1 and the slice 1) from the
second partial stream buffer 363. The multiplexing unit 350
then reads the partial stream buffer information=2 and the
NAL unit number information=1, as the selection informa-
tion of the slice 2. According to the selection information of
the slice 2, the multiplexing unit 350 obtains one NAL unit
(the slice 2) from the second partial stream buffer 363. The
multiplexing unit 350 then reads the partial stream buffer
information=1 and the NAL unit number information=2, as
the selection information of the slice 3. According to the
selection information of the slice 3, the multiplexing unit 350
obtains two NAL units (the PPS 2 and the slice 3) from the
first partial stream buffer 363. The multiplexing unit 350 then
reads the partial stream buffer information=2 and the NAL
unit number information=1, as the selection information of
the slice 4. According to the selection information of the slice
4, the multiplexing unit 350 obtains one NAL unit (the slice 4)
from the second partial stream buffer 363.

Thus, through the use of the selection information notified
from the stream combination control unit 340, the multiplex-
ing unit 350 can obtain the partial streams (the slices of the
partial streams) from the M partial stream buffers 363 in the
same order of slices as in the segment streams generated by
the N encoding engines 320.

Note that the slice allocation processing described with
reference to FIGS. 32A to 34 is merely one processing opera-
tion example of the image coding apparatus 300 according to
the present invention, and the present invention is not limited
to the processing operation described here.

For example, though the stream combination control unit
340 designates the slice number when notifying the stream
combination unit 330 to perform stream combination of the
slice in FIG. 32B, the stream combination control unit 340
may designate the number of slices to be skipped, instead of
the slice number. In this case, the stream combination control
unit 340 keeps a record of the number of slices allocated to
each ofthe M stream combination units 330 and, based on this
information, calculates the number of slices to be skipped.
Moreover, though the stream combination unit 330 notifies
the stream combination control unit 340 of the processing
completion and the number of NAL units outputted to the
partial stream buffer 363 at the end of the stream combination
processing of the slice by the stream combination unit 330 in
FIG. 32B, the stream combination unit 330 may notify the
number of bits of the partial stream outputted to the partial
stream buffer 363, instead of the number of NAL units out-
putted to the partial stream buffer 363. That is, the stream
combination unit 330 may notify any information that

20

40

45

74

enables the multiplexing unit 350 to determine the size of the
partial stream to be obtained from the partial stream buffer
363.

Moreover, though the partial stream buffer information
directly designates the buffer number of the partial stream
buffer 363 in F1G. 34, information other than the buffer num-
ber may instead be used. For example, in the case where M=2,
the partial stream buffer information may be information
indicating whether or not the partial stream buffer 363 storing
the partial stream corresponding to the slice as the processing
target is the same as the partial stream buffer 363 storing the
partial stream corresponding to the immediately preceding
slice. Thatis, the partial stream buffer information may be any
information that enables the multiplexing unit 350 to appro-
priately obtain the partial streams from the plurality of partial
stream buffers 363. Moreover, though the selection informa-
tion includes the NAL unit number information in FIG. 34 as
an example, the selection information may include informa-
tion indicating the number of bits of the partial stream instead
of the NAL unit number information, as mentioned above.

The following describes a structure and an operation of the
stream combination unit 330 in detail.

FIG. 35 is a block diagram showing the structure of the
stream combination unit 330.

The stream combination unit 330 includes a processing
management unit 330m, a selector Sctl, a start code detection
unit 331, an EPB removal unit 332a, an EPB insertion unit
3325, a header insertion unit 333, and slice data processing
units 334a and 3345.

The processing management unit 330m obtains mode
information and allocation control information and, accord-
ing to the obtained information, controls the other compo-
nents included in the stream combination unit 330. For
example, the processing management unit 330m holds the
slice number (such as SN1, SN2, or the like) of the slice to be
processed and controls the selector Sctl based on the slice
number so that the stream combination processing as shown
in FIGS. 32A to 34 is carried out. Thus, the processing man-
agement unit 330m causes the new slice (the partial stream
including the new slice) reconstructed from the SPS, the PPS,
or the processing target slice to be outputted or not to be
outputted.

The start code detection unit 331 reads any of the N seg-
ment streams from the segment stream buffer 352, and detects
start code to thereby recognize the slice.

The EPB removal unit 3324 removes an EPB (emulation
prevention byte) from the segment stream, and outputs the
segment stream from which the EPB has been removed, to the
slice data processing units 334a and 3344.

The EPB insertion unit 3325 inserts the EPB removed by
the EPB removal unit 332a, into the partial stream generated
by combining the segment streams.

The header insertion unit 333 generates header information
such as an SPS, a PPS, or a slice header, and outputs the
header information to the EPB insertion unit 3325.

The slice data processing units 334a and 3345 each recon-
struct slice data by combining the N segment streams from
which the EPB has been removed, and output the recon-
structed slice data. Here, the slice data processing unit 334a
executes processing in accordance with CAVLD (Context-
Adaptive Variable Length Decoding), and combines the N
segment streams generated by CAVLC (Context-Adaptive
Variable Length Coding) to generate the partial stream.
Meanwhile, the slice data processing unit 3345 executes pro-
cessing in accordance with CABAD (Context-Adaptive
Binary Arithmetic Decoding), and combines the N segment

US 9,307,260 B2

75

streams generated by CABAC (Context-Adaptive Binary
Arithmetic Coding) to generate the partial stream.

The slice data processing unit 334 includes a slice data
layer analysis unit 3354, a macroblock layer analysis unit
3364, a skip run modification unit 337a, a QP delta modifi-
cation unit 3384, and a segment boundary detection unit
339a.

The slice data layer analysis unit 3354 analyzes coded data
in the slice data layer included in the segment stream, and
extracts information necessary for stream combination pro-
cessing. The macroblock layer analysis unit 336a analyzes
coded data in the macroblock layer included in the segment
stream, and extracts information necessary for stream com-
bination processing.

The skip run modification unit 3374 modifies MB skip run
information “mb_skip_run” extracted by the slice data layer
analysis unit 3354, re-codes the modified MB skip run infor-
mation, and outputs the re-coded MB skip run information.
That is, in the case where the MB skip run information indi-
cates the number of consecutive blocks which cross the
boundary between at least two consecutive slice portions in
the segment stream, the skip run modification unit 337« seg-
ments the number of consecutive blocks to modify the MB
skip run information so as to indicate the number of blocks in
each slice portion, and sets the modified MB skip run infor-
mation in the segment stream to which each of the at least two
consecutive slice portions is assigned. Moreover, in the case
where a plurality of blocks corresponding to a plurality of
pieces of MB skip run information set in the partial stream
generated by combining the segment streams are consecutive
in the partial stream, the skip run modification unit 337«
converts the plurality of pieces of MB skip run information to
one piece of MB skip run information indicating a total sum
of'the numbers indicated by the plurality of pieces of MB skip
run information.

Here, the MB skip run information is an example of a first
code word indicating the number of the consecutive blocks in
the case where blocks of a particular kind are consecutive in
a slice in a coded picture. In detail, the MB skip run informa-
tion indicates the number of macroblocks consecutively
skipped.

For example, in the case where a set of macroblocks which
are consecutively skipped crosses the boundary between a
plurality of MB lines in a slice in the segment stream, the MB
skip run information extracted by the slice data layer analysis
unit 335q indicates the number of consecutive skipped mac-
roblocks included in the set. In such a case, when the N
segment streams are segmented into MB lines and the MB
lines included in the N segment streams are sequentially
assigned to one partial stream, the number of consecutive
skipped macroblocks changes in the partial stream. In other
words, the dependency between the MB lines based on the
MB skip run information is broken.

To prevent this, the skip run modification unit 3374 speci-
fies, for each MB line including a portion of the above-
mentioned set, the number of consecutive skipped macrob-
locks that constitute the portion included in the MB line. The
skip run modification unit 3374 then modifies, for each MB
line, the MB skip run information to indicate the number of
macroblocks specified for the MB line.

The QP delta modification unit 3384 modifies, for each
macroblock, a QP variation “mb_qp_delta” of the macrob-
lock extracted by the macroblock layer analysis unit 336a,
re-codes the modified QP variation, and outputs the re-coded
QP variation. That is, in the case where the QP variation
indicates a variation between blocks which cross the bound-
ary between two MB lines, the QP delta modification unit

35

40

45

60

76

338a calculates a variation in coding coefficient based on a
new context of the blocks in the partial stream. The QP delta
modification unit 3384 then modifies the QP variation to the
calculated variation.

Here, the QP variation is an example of a second code word
indicating a variation in coding coefficient between consecu-
tive blocks in a slice in a coded picture. In detail, the QP
variation is included in a macroblock (target macroblock),
and indicates a difference value between a QP value of the
target macroblock and a QP value of a macroblock located
immediately before the target macroblock.

That is, when the N segment streams are segmented into
MB lines and the MB lines included in the N segment streams
are sequentially assigned to one partial stream, consecutive
macroblocks that cross the boundary between MB lines are
assigned to separate positions in the partial stream. As a
result, a decoder that decodes a bit stream including the
generated partial stream cannot derive the QP value of the
target macroblock from the QP variation of the target mac-
roblock. In other words, the dependency between the MB
lines based on the QP variation is broken.

To prevent this, the QP delta modification unit 3384 re-
calculates, for each macroblock, the QP variation of the mac-
roblock (target macroblock) based on the new context of
macroblocks in the partial stream.

The segment boundary detection unit 3394 segments the
segment streams into MB lines, and combines the MB lines to
generate the partial stream. In detail, the segment boundary
detection unit 339a detects MB line boundaries in the seg-
ment streams based on the information extracted by the slice
data layer analysis unit 3354 and the macroblock layer analy-
sis unit 3364, and switches, for each MB line boundary, the
segment stream read from the segment stream buffer 352 by
the stream combination unit 330, to combine the N segment
streams on an MB line basis. The segment boundary detection
unit 339 also includes, in the partial stream, the MB skip run
information obtained from the skip run modification unit
337a and the QP variation obtained from the QP delta modi-
fication unit 338a.

The segment boundary detection unit 339a further detects
and removes slice-end information included in the inputted
segment stream, and adds appropriate slice-end information
to the slice reconstructed by combining the segment streams
and assigns it to the partial stream.

The slice data processing unit 3345 includes a slice data
layer analysis unit 33554, a macroblock layer analysis unit
3365, a QP delta modification unit 3385, and a segment
boundary detection unit 3394.

The slice data layer analysis unit 3355 analyzes coded data
in the slice data layer included in the segment stream, and
extracts information necessary for stream combination pro-
cessing. The macroblock layer analysis unit 3365 analyzes
coded data (binary data) in the macroblock layer included in
the segment stream, and extracts information necessary for
stream combination processing.

The QP delta modification unit 3385 modifies, for each
macroblock, a QP variation “mb_qp_delta” of the macrob-
lock extracted by the macroblock layer analysis unit 3365,
re-codes the modified QP variation, and outputs the re-coded
QP variation, as with the above-mentioned QP delta modifi-
cation unit 338a.

The segment boundary detection unit 3395 segments the
segment streams into MB lines, and combines the MB lines to
generate the partial stream, as with the segment boundary
detection unit 3394. Here, the segment boundary detection
unit 3395 includes, in each segment stream, the QP variation
obtained from the QP delta modification unit 3385. The seg-

US 9,307,260 B2

77

ment boundary detection unit 3395 also detects and removes
slice-end information included in the inputted segment
stream, and adds appropriate slice-end information to the
slice reconstructed by combining the segment streams and
assigns it to the partial stream. The segment boundary detec-
tion unit 3395 further performs arithmetic coding on the
binary data included in the segment stream.

The following describes an operation of the skip run modi-
fication unit 3374 in detail.

As mentioned earlier, the skip run modification unit 337a
modifies “mb_skip_run” which is MB skip run information.
The MB skip run information is a code word included in a bit
stream in the case where the coding method is CAVL.C, and
indicates the number of consecutive skipped macroblocks
(hereafter also referred to as “length”). In the following
description, the length of'the MB skip run information means
the number of consecutive skipped macroblocks indicated by
the MB skip run information.

FIG. 36 is an illustration of MB skip run information modi-
fication processing.

FIG. 36 shows a picture coded by the N encoding engines
320 so that five consecutive skipped macroblocks are located
at the end of the MB line L2, three consecutive skipped
macroblocks are located at the beginning of the MB line L3,
two consecutive skipped macroblocks are located at the end
of'the MB line L5, and four consecutive skipped macroblocks
are located at the beginning of the MB line L.6. In the segment
streams including such a coded picture, MB skip run infor-
mation of 2 in length indicating the number of consecutive
skipped macroblocks at the end of the MB line L5 is coded in
the first segment stream, MB skip run information of 9
(544=9) in length indicating the number of consecutive
skipped macroblocks which cross the boundary between the
MB lines .2 and L6 is coded in the second segment stream,
and MB skip run information of 3 in length indicating the
number of consecutive skipped macroblocks at the beginning
of the MB line L3 is coded in the third segment stream.
Meanwhile, no MB skip run information is coded in the
fourth segment stream.

This being the case, when the N segment streams are seg-
mented into MB lines and the MB lines are combined as one
stream, the number of consecutive skipped macroblocks
changes in the combined stream. In other words, the depen-
dency between the plurality of MB lines based on the MB skip
run information indicating the number of consecutive
skipped macroblocks which cross the boundary between the
plurality of MB lines is broken.

That is, in the combined stream, eight consecutive skipped
macroblocks cross the boundary between the MB lines 1.2
and .3, and six consecutive skipped macroblocks cross the
boundary between the MB lines L5 to L6, but there is no other
skipped macroblock.

Thus, though the MB skip run information included in the
segment streams are the MB skip run information of 2 in
length in the first segment stream, the MB skip run informa-
tion of 9 in length in the second segment stream, and the MB
skip run information of 3 in length in the third segment
stream, it is necessary to output MB skip run information of 8
in length and MB skip run information of 6 in length in the
combined stream. That is, in the case where there is a depen-
dency between a plurality of MB lines based on MB skip run
information indicating the number of consecutive skipped
macroblocks which cross the boundary between the plurality
of MB lines in each segment stream, the MB skip run infor-
mation needs to be modified so that the dependency is
changed to a new dependency based on the context of MB
lines in the combined stream.

5

10

15

20

25

30

35

40

45

50

55

60

65

78

Hence, in the case where a set of skipped macroblocks
corresponding to the MB skip run information extracted by
the slice data layer analysis unit 3354 crosses the boundary
between a plurality of MB lines in one segment stream, the
skip run modification unit 3374 segments the MB skip run
information at the boundary of the MB lines. Here, segment-
ing the MB skip run information at the boundary of the MB
lines means to segment the number of consecutive skipped
macroblocks which cross the boundary between the MB lines
in one segment stream, and generate a plurality of pieces of
MB skip run information that each indicate the number of
skipped macroblocks for a different one of the MB lines.

In the case of the picture shown in FIG. 36, the skip run
modification unit 337a segments the MB skip run informa-
tion corresponding to the set of nine skipped macroblocks
which cross the boundary between the MB lines .2 and L6 in
the second segment stream, into MB skip run information
corresponding to the set of five skipped macroblocks
included in the MB line [.2 and MB skip run information
corresponding to the set of four skipped macroblocks
included in the MB line L6.

Next, the skip run modification unit 3374 re-combines,
among the segmented pieces of MB skip run information, a
plurality of pieces of MB skip run information corresponding
to a set of consecutive skipped macroblocks in the combined
stream. Here, re-combining the plurality of pieces of MB skip
run information means to convert the plurality of pieces of
MB skip run information to one piece of MB skip run infor-
mation indicating a total sum of the numbers indicated by the
plurality of pieces of MB skip run information.

In the case of the picture shown in FIG. 36, among the sets
of skipped macroblocks corresponding to the segmented MB
skip run information, the set of skipped macroblocks of 5 in
length included in the MB line L2 and the set of skipped
macroblocks of 3 in length included in the MB line .3 are
consecutive in the combined stream. Accordingly, the skip
run modification unit 337a combines the two pieces of MB
skip run information respectively corresponding to these two
sets of skipped macroblocks, into MB skip run information of
8 in length. In addition, the set of skipped macroblocks of 2 in
length included in the MB line L5 and the set of skipped
macroblocks of 4 in length included in the MB line 1.6 are
consecutive in the combined stream. Accordingly, the skip
run modification unit 337a combines the two pieces of MB
skip run information respectively corresponding to these two
sets of skipped macroblocks, into MB skip run information of
6 in length.

Lastly, the skip run modification unit 337a re-codes the
thus obtained MB skip run information, and outputs the re-
coded MB skip run information.

As described above, the skip run modification unit 337a
can output the MB skip run information of the appropriate
length for the combined stream, by segmenting the inputted
MB skip run information at the MB line boundary and then
re-combining the MB skip run information as necessary.

Here, the skip run modification unit 3374 re-combines the
consecutive pieces of MB skip run information in the com-
bined stream as necessary without leaving them in a seg-
mented state, because H.264/AVC does not allow a plurality
of pieces of MB skip run information to be present consecu-
tively. That is, H.264/AVC does not allow the number of
consecutive skipped macroblocks to be represented using a
plurality of pieces of MB skip run information. The skip run
modification unit 3374 accordingly combines the plurality of
pieces of MB skip run information. Since the skip run modi-
fication unit 3374 modifies the MB skip run information in

US 9,307,260 B2

79

conformance with H.264/AVC in this way, the combined
stream generated as a result is also in conformance with
H.264/AVC.

The above describes an example where the skip run modi-
fication unit 337a performs MB skip run information seg-
mentation and re-combination in the case where MB skip run
information extends over a plurality of MB lines in each
segment stream. Even in the case where MB skip run infor-
mation does not extend over a plurality of MB lines in each
segment stream, however, when MB skip run information
extends over a plurality of MB lines in the combined stream,
the skip run modification unit 337a does not perform MB skip
run information segmentation but performs only MB skip run
information re-combination.

The following describes operations of the QP delta modi-
fication units 3384 and 3385 in detail. In the following, the QP
delta modification units 338a and 3385 are not differentiated
from each other but collectively referred to as a QP delta
modification unit 338 when describing functions and process-
ing operations common to the QP delta modification units
3384 and 3385.

The QP delta modification unit 338 modifies a QP variation
“mb_qp_delta” that is in principle provided for each macrob-
lock.

Each of FIGS. 37A and 37B is an illustration of QP varia-
tion modification processing.

Take, for example, a macroblock C in a picture shown in
FIG. 37A. A macroblock processed immediately before the
macroblock C in the second segment stream is a macroblock
A. Accordingly, in the macroblock C, a difference value
between a QP value ofthe macroblock A and a QP value of the
macroblock C is coded as a QP variation.

However, when such segment streams are segmented into
MB lines and the MB lines are combined together and
assigned to one stream, the context of macroblocks at MB line
boundaries changes in the combined stream.

That is, after the stream combination, the macroblock
immediately preceding the macroblock C is a macroblock B.
In the case where a decoder decodes a bit stream coded in this
way, the QP value of the macroblock C cannot be correctly
decoded because the QP variation which is the difference
value between the QP value of the macroblock A and the QP
value of the macroblock C is reflected on a QP value of the
macroblock B. In other words, the dependency between two
MB lines based on the QP variation indicating the variation
between macroblocks which cross the boundary between the
two MB lines is broken.

To prevent this, the QP delta modification unit 338 modi-
fies the QP variation so as to correct the change in context of
macroblocks caused by the stream combination. That is, in
the case where there is a dependency between two MB lines
based on a QP variation indicating a variation between mac-
roblocks which cross the boundary between the two MB lines
in one segment stream, the QP delta modification unit 338
modifies the QP variation so that the dependency is changed
to a new dependency based on the context of MB lines in the
combined stream.

As the QP variation modification method, there is a method
of decoding (reconstructing) QP values of all macroblocks
and then re-calculating QP variations based on the new con-
text of macroblocks after stream combination. This method,
however, requires two processes that are QP value decoding
and QP variation calculation, causing an increase in process-
ing amount of the QP delta modification unit 338.

In view of this, in this embodiment, the QP delta modifi-
cation unit 338 accumulates, for each segment stream, QP
variations of macroblocks that are not assigned to the target

10

15

20

25

30

35

40

45

50

55

60

65

80

segment stream, and subtracts the accumulated QP variations,
to thereby directly derive modified QP variations without
decoding QP values. The QP variation accumulation is per-
formed according to Expression (3).

As a specific example, the modification processing of the
QP variation of the macroblock C in the picture shown in FIG.
37A is described below. As mentioned earlier, the macrob-
lock immediately preceding the macroblock C in the com-
bined stream is the macroblock B. Hence, the difference value
between the QP value of the macroblock B and the QP value
of the macroblock C needs to be included in the macroblock
C as the QP variation.

Accordingly, the QP delta modification unit 338 accumu-
lates QP variations of all macroblocks included in the MB
lines 1.3 to LS. By accumulating the QP variations of all
macroblocks between the macroblock A and the macroblock
C in this way, it is possible to obtain a correction value for
deriving the QP wvariation which is the difference value
between the QP value of the macroblock B and the QP value
of the macroblock C.

Next, the QP delta modification unit 338 subtracts the
accumulated QP variation from the QP variation of the mac-
roblock C to derive the QP variation which is the difference
value between the QP value of the macroblock B and the QP
value of the macroblock C, according to Expression (5)
below.

mb_gp_delta=(mb_qp_delta—acc_mb_qp_delta+52)

%52)

Here, “mb_qp_delta” denotes the QP variation of the mac-
roblock C, and “acc_mb_qp_delta” denotes the accumulated
QP variation of all macroblocks included in the MB lines [.3
to LS.

The QP variation obtained here is a value in a range of 0 to
51 because it is derived according to Expression (5). How-
ever, the actual QP variation “mb_qp_delta” is a value rang-
ing from -26 to +25. The QP delta modification unit 338
accordingly modifies the QP variation “mb_qp_delta” to bein
a range of -26 to +25, according to Expression (6) below.

When mb_qgp_delta>25: mb_qp_delta=mb_qp_delta—
52

When mb_qp_delta 25:mb_qp_delta=mb_qp_delta (6)

The QP variation of the macroblock C is modified in the
above manner.

Though the macroblock C is used as an example here, the
same processing is performed on starting macroblocks of all
MB lines. For instance, for a lower macroblock adjacent to
the macroblock C, QP variations of all macroblocks in the
MB lines .4 to L6 are accumulated, and the accumulated QP
variation is subtracted from the QP variation of the macrob-
lock, to derive the modified QP variation. This processing is
performed independently for each MB line.

Each of'the N encoding engines 320, upon coding a starting
macroblock of each MB line, codes the starting macroblock
s0 as to include a QP variation. Note that a macroblock with
no QP variation in H.264/AVC is (1) a skipped macroblock,
(2) anon-compressed macroblock (I_PCM), or (3) a macrob-
lock whose intra-prediction mode is not “Intra 16x16” and
whose “coded_block_pattern™ is O (that is, no non-zero coef-
ficient is included). Thus, the QP variation of the starting
macroblock of each MB line can be correctly modified.

In the case where no QP variation is included in any of the
macroblocks in the corresponding MB line, the QP variation
accumulation is continued until the macroblock that is subject
to QP variation modification appears.

US 9,307,260 B2

81

Lastly, the QP delta modification unit 338 re-codes the
modified QP variation obtained in this way, and outputs the
re-coded modified QP variation to the segment boundary
detection unit 339a or 3395. Here, the QP delta modification
unit 338a performs coding according to CAVL.C, whereas the
QP delta modification unit 3385 performs coding according
to CABAC.

As described above, the QP delta modification unit 338 can
set the appropriate QP variation for the combined stream, by
modifying the inputted QP variation based on the context of
macroblocks in the combined stream.

FIG. 37B shows an example where slices are separated at
the boundary of the MB lines 4 and 5. In this example, the MB
lines L1 to L4 are included in a slice A, while the MB lines L5
to L8 are included in a slice B.

In such a case, the macroblock A and the macroblock C are
consecutive in the second segment stream, as in FIG. 37A.
However, the macroblock A and the macroblock C are
included in the different slices, and thus there is no depen-
dency between the macroblock A and macroblock C. In the
second segment stream, the macroblock C is the starting
macroblock of the slice B. Accordingly, the QP variation of
the macroblock C indicates the difference value between the
QP value of the macroblock C and the slice QP value of the
slice B.

This being so, the QP delta modification unit 338 can
calculate the QP difference value between the macroblock B
and the macroblock C, by accumulating the QP variations of
the macroblocks included in the slice B from among the
macroblocks between the macroblock A and the macroblock
C and subtracting the accumulated QP variation.

In detail, the QP delta modification unit 338 accumulates
the QP variations of all macroblocks between the macroblock
A and the macroblock C but, upon start of processing of the
starting macroblock of the slice B, resets the accumulated QP
variation “acc_mb_qp_delta” to 0. This enables only the QP
variations of the macroblocks included in the slice B to be
accumulated, with it being possible to correctly calculate the
modified QP variation of the macroblock C.

The QP delta modification unit 338 re-codes the modified
QP variation obtained in this way, and outputs the re-coded
modified QP variation to the segment boundary detection unit
3394 or 3395.

Thus, in the image coding apparatus 300 in this embodi-
ment, a picture is segmented into a plurality of MB lines
(structural units), and each of the plurality of MB lines is
assigned to and coded by a corresponding one of the N encod-
ing engines 320. This enables the N encoding engines 320 to
equally share the load of coding processing, with it being
possible to appropriately execute parallel coding processing.
For example, even in the case where an H.264/AVC picture is
composed of one slice, the picture is segmented into a plural-
ity of MB lines, so that the load of coding the slice is not
placed on one encoding engine 320 but equally shared by the
N encoding engines 320.

Here, when a picture is coded independently by the N
encoding engines 320, there is a possibility that a slice which
originally extends over more than one MB line in one picture
is segmented into a plurality of slice portions and these slice
portions are assigned to different segment streams. In such a
case, the whole slice in the coded picture is not included in
one segment stream. Instead, a slice portion group made up of
one or more slice portions which are segments of the slice is
included in each segment stream.

There is also an instance where a plurality of MB lines have
a dependency based on a predetermined code word included
in a bit stream. For example, in H.264/AVC, there may be a

10

15

20

25

30

35

40

45

50

55

60

65

82

dependency between a plurality of MB lines based on MB
skip run information “mb_skip_run” or a QP variation
“mb_qp_delta”. When such a bit stream is segmented into a
plurality of MB lines and the plurality of MB lines are
assigned to different segment streams, the dependency
between the MB lines cannot be correctly maintained.

In view of this, in this embodiment, the stream combination
unit 330 combines the N segment streams to reconstruct the
new slice. As a result, the image coding apparatus 300 can
generate a bit stream in conformance with H.264/AVC.
According to this embodiment, there is no need to provide
each of the N encoding engines 320 with a function or a
structure for special processing, so that the whole structure of
the image coding apparatus 300 can be simplified.

Moreover, in the image coding apparatus 300 in this
embodiment, while the above-mentioned stream combina-
tion processing is performed by the M stream combination
units 330, the stream combination control unit 340 allocates
the stream combination processing to the M stream combi-
nation units 330 on a slice basis so that the M stream combi-
nation units 330 are equal in processing amount. Such a
structure enables the M stream combination units 330 to
equally share the load of stream combination processing, so
that parallel coding processing can be achieved in the whole
system.

Though this embodiment describes the case where the
encoder 310 includes the M stream combination units 330,
the encoder 310 may include only one stream combination
unit 330.

FIG. 38A is a block diagram showing a structure of an
image coding apparatus including only one stream combina-
tion unit.

An image coding apparatus 300a shown in FIG. 38A
includes an encoder 310a and a memory 360a. The memory
360aq includes the frame memory 361 and the segment stream
buffer 362 as with the memory 360 described above, but does
not include the partial stream buffers 363. The encoder 310a
includes the N encoding engines 320 as with the encoder 310
described above, but includes one stream combination unit
3305 instead of the M stream combination units 330.

The stream combination unit 3305 serially performs
stream combination processing which the M stream combi-
nation units 330 performin parallel. In detail, when a plurality
of slices are included in each of the N segment streams out-
putted from the N encoding engines 320, the stream combi-
nation unit 3305 sequentially performs stream combination
processing in the order of the slices. For example, when slices
0,1, 2,...,nareincluded in each of the N segment streams,
the stream combination unit 3305 performs stream combina-
tion processing of combining a plurality of slices 0 included
in the N segment streams, then performs stream combination
processing of combining a plurality of slices 1 included in the
N segment streams, and then performs stream combination
processing of combining a plurality of slices 2 included in the
N segment streams. The stream combination unit 3305 lastly
performs stream combination processing of combining a plu-
rality of'slices n included in the N segment streams. Note that
the stream combination processing performed by the stream
combination unit 3304 is the same as the above-mentioned
processing performed by the stream combination unit 330.

The stream combination unit 3305 sequentially outputs
new slices (reconstructed slices) generated by the stream
combination processing performed in sequence in the above
manner. Thus, the stream combination unit 3305 outputs a bit
stream.

That is, the image coding apparatus 300q is an image
coding apparatus that generates a bit stream by coding image

US 9,307,260 B2

83

data, the image coding apparatus including: N coding units
(encoding engines 320) that generate N (N is an integer equal
to or greater than 2) segment streams by coding, for each
picture included in the image data, a plurality of structural
units included in the picture in parallel; and a stream combi-
nation unit (3305) that executes, for each processing area
included in the bit stream, combination processing of com-
bining partial areas that are respectively included in the N
segment streams and correspond to the processing target area
to generate a combined coding area which is the processing
target area, wherein the stream combination unit: in the case
where the partial areas are composed of a plurality of coded
structural units when executing the combination processing,
generates the combined coding area by segmenting the partial
areas into the plurality of coded structural units and recom-
bining the plurality of coded structural units; and in the case
where a slice included in the image data is segmented into a
plurality of slice portions and coded and the plurality of coded
slice portions are assigned to the N segment streams when
performing the recombination, reconstructs a slice portion
group made up of the plurality of coded slice portions as a new
slice in the combined coding area.

For example, the structural unit is a macroblock line or the
like, the processing target area is a slice in a bit stream or the
like, and the partial area is a slice in a segment stream or the
like.

FIG. 38B is a flowchart showing an operation of the image
coding apparatus 300q.

First, the N encoding engines 320 in the image coding
apparatus 300qa generate N (N is an integer equal to or greater
than 2) segment streams by coding, for each picture included
in the image data, a plurality of structural units included in the
picture in parallel (Step S30). Next, the stream combination
unit 3305 executes, for each processing area included in the
bit stream, combination processing of combining partial
areas that are respectively included in the N segment streams
and correspond to the processing target area to generate a
combined coding area which is the processing target area
(Step S31). In Step S31, in the case where the partial areas are
composed of a plurality of coded structural units when
executing the combination processing, the stream combina-
tion unit 3305 generates the combined coding area by seg-
menting the partial areas into the plurality of coded structural
units and recombining the plurality of coded structural units.
Moreover, in the case where a slice included in the image data
is segmented into a plurality of slice portions and coded and
the plurality of coded slice portions are assigned to the N
segment streams when performing the recombination, the
stream combination unit 3305 reconstructs a slice portion
group made up of the plurality of coded slice portions as a new
slice in the combined coding area.

Thus, even in the case where there is only one stream
combination unit, when the speed of stream combination
processing by the stream combination unit is equal to or
higher than the speed of parallel coding processing by the N
encoding engines 320, sufficiently high coding processing
performance by parallel coding processing can be exhibited.
Hence, the image coding apparatus can be simplified in struc-
ture. Besides, the components such as the stream combination
control unit 340, the multiplexing unit 350, and the M partial
stream buffers 363 are unnecessary, so that the whole struc-
ture and processing of the image coding apparatus can be
simplified.

The following describes an application example of the
image decoding apparatus according to each of Embodiments
1 and 2.

10

15

20

25

30

35

40

45

55

60

65

84

FIG. 39 is a diagram showing an application example of the
image decoding apparatus according to each of Embodiments
1 and 2 and the image coding apparatus according to Embodi-
ment 3.

For example, as shown in FIG. 39, the image decoding
apparatus and the image coding apparatus are provided in a
reproduction and recording apparatus 101 that receives a
broadcast wave and reproduces and records a bit stream
included in the broadcast wave. The reproduction and record-
ing apparatus 101 includes an antenna 101a that receives a
broadcast wave of BS digital broadcasting, and an apparatus
body 1015 that includes the image decoding apparatus and
the image coding apparatus.

The image decoding apparatus in the apparatus body 1015
extracts, for example, a 4k2k bit stream from the broadcast
wave received by the antenna 101a. The image decoding
apparatus segments the extracted bit stream to generate N
segment streams, and decodes the N segment streams in par-
allel, as described above.

The image coding apparatus in the apparatus body 1015
re-codes, in parallel, 4k2k pictures decoded by the image
decoding apparatus, and records the re-coded pictures to a
storage medium included in the apparatus body 1014.

Though the image decoding apparatus and the image
decoding method according to the present invention have
been described above by way of the embodiments, the present
invention is not limited to such. Other embodiments realized
by applying modifications conceivable by those skilled in the
art to the embodiments or combining the components in the
different embodiments are also included in the present inven-
tion without departing from the scope of the present inven-
tion.

For example, though the above embodiments describe the
case where the image decoding apparatus 100 or 200 includes
the segment stream buffers 152 and the like, the image decod-
ing apparatus 100 or 200 may not necessarily include them.

FIG. 40 is ablock diagram showing a minimum structure of
an image decoding apparatus according to the present inven-
tion.

An image decoding apparatus 10 is an apparatus that
decodes a bit stream generated by coding image data, and has
a minimum structure for implementing the present invention.
The image decoding apparatus 10 includes a first segmenta-
tion control unit 11, M stream segmentation units 12, a second
segmentation control unit 13, and N decoding units 14. A
component including the first segmentation control unit 11
and the second segmentation control unit 13 corresponds to
the stream segmentation control unit 140 in Embodiment 1 or
2. The M stream segmentation units 12 correspond to the M
stream segmentation units 130 in Embodiment 1 or the M
stream segmentation units 230 in Embodiment 2. The N
decoding units 14 correspond to the N decoding engines 120
in Embodiment 1 or the N decoding engines 220 in Embodi-
ment 2.

The first segmentation control unit 11 designates a process-
ing target area (for example, a slice, a picture, and the like)
included in the bit stream. That is, the first segmentation
control unit 11 sends allocation control information indicat-
ing the processing target area. Each of the M stream segmen-
tation units 12 executes, each time a processing target area is
designated to the stream segmentation unit 12 by the first
segmentation control unit 11, stream segmentation process-
ing of generating at least a portion of N (N is an integer equal
to or greater than 2) segment streams from the processing
target area. Here, the M stream segmentation units 12 gener-
ate MxN segment streams by executing the stream segmen-

US 9,307,260 B2

85

tation processing in parallel on M (M is an integer equal to or
greater than 2) processing target areas designated by the first
segmentation control unit 11.

The second segmentation control unit 13 selects, for each
processing target area designated by the first segmentation
control unit 11, a portion of each of at least one segment
stream from the MxN segment streams generated by the M
stream segmentation units 12, based on a position of the
processing target area in the bit stream. The position men-
tioned here is, for example, a position in arrangement order of
the processing target area in the bit stream. The selection of a
portion of each of at least one segment stream from the MxN
segment streams corresponds to the selection of one segment
stream buffer 152 from the M segment stream buffers 152 in
Embodiment 1 or 2. The N decoding units 14 decode respec-
tive portions of the N segment streams in parallel, the portions
of'the N segment streams including the portion of each of the
at least one segment stream selected by the second segmen-
tation control unit 13.

Here, each of the M stream segmentation units 12 executes
the stream segmentation processing, by segmenting the pro-
cessing target area into a plurality of structural units (for
example, macroblock lines) and assigning each of the plural-
ity of structural units to a portion of a corresponding one of
the N segment streams to be generated. In the case where a
slice included in the processing target area is segmented into
a plurality of slice portions and the plurality of slice portions
are assigned to a plurality of segment streams as a result of
segmenting the processing target area into the plurality of
structural units, each of the M stream segmentation units 12
reconstructs, for each of the plurality of segment streams, a
slice portion group made up of one or more slice portions
assigned to the segment stream, as a new slice.

FIG. 41 is a flowchart showing an image decoding method
by the image decoding apparatus 10.

This image decoding method is a method whereby the
image decoding apparatus 10 decodes a bit stream, and
includes: a first segmentation control step S50 of designating
a processing target area included in the bit stream; a stream
segmentation step S51 of generating MxN segment streams
by executing stream segmentation processing in parallel on M
(M is an integer equal to or greater than 2) processing target
areas designated in the first segmentation control step S51,
the stream segmentation processing being a process of gen-
erating at least a portion of N (N is an integer equal to or
greater than 2) segment streams from a processing target area
each time the processing target area is designated in the first
segmentation control step S50; a second segmentation con-
trol step S52 of selecting, for each processing target area
designated in the first segmentation control step S50, a por-
tion of each of at least one segment stream from the MxN
segment streams generated in the stream segmentation step
S51, based on a position of the processing target area in the bit
stream; and a decoding step S53 of decoding, each time the
portion of each of the at least one segment stream is selected
in the second segmentation control step S52, respective por-
tions of the N segment streams in parallel, the portions of the
N segment streams including the portion of each ofthe at least
one segment stream. In the stream segmentation step S51, the
stream segmentation processing is executed by segmenting
the processing target area into a plurality of structural units
and assigning each of the plurality of structural units to a
portion of a corresponding one of the N segment streams to be
generated. Moreover, in the case where a slice included in the
processing target area is segmented into a plurality of slice
portions and the plurality of slice portions are assigned to a
plurality of segment streams as a result of segmenting the

20

25

30

35

40

45

86

processing target area into the plurality of structural units, for
each of the plurality of segment streams, a slice portion group
made up of one or more slice portions assigned to the segment
stream is reconstructed as a new slice.

In the image decoding apparatus 10 and the image decod-
ing method described above, a processing target area such as
a coded picture or slice is segmented into a plurality of struc-
tural units such as macroblock lines, and each of the plurality
of macroblock lines is assigned to and decoded by a corre-
sponding one of the N decoding units as a portion of a seg-
ment stream. This enables the N decoding units to equally
share the load of decoding processing, with it being possible
to appropriately execute parallel decoding processing. For
example, even in the case where an H.264/AVC coded picture
is composed of one slice, the coded picture is segmented into
a plurality of macroblock lines, so that the load of decoding
one slice is not placed on one decoding unit but equally shared
by the N decoding units.

When a coded picture is segmented into a plurality of
macroblock lines, there is a possibility that a slice extending
over a plurality of macroblock lines is segmented into a plu-
rality of'slice portions and these slice portions are assigned to
different segment streams. In such a case, the whole slice in
the coded picture is not included in one segment stream.
Instead, a slice portion group made up of one or more slice
portions which are segments of the slice is included in each
segment stream. There is also a possibility that such a slice
portion group does not have a header indicating the beginning
of'the slice portion group and end information indicating the
end of the slice portion group. Besides, there is an instance
where, among the plurality of slice portions, at least two slice
portions consecutive in the bit stream have a dependency
based on a predetermined code word included in the bit
stream.

Accordingly, in the image decoding apparatus 10 and the
image decoding method, the slice portion group is recon-
structed as a new slice. Hence, each decoding unit 14 that
decodes the segment stream including the slice portion group
can easily recognize the slice portion group as a new slice to
appropriately decode the slice portion group, without requir-
ing special processing for recognizing the slice portion group
to appropriately decode the slice portion group. That is, in the
image decoding apparatus 10 and the image decoding
method, there is no need to provide each of the N decoding
units 14 with a function or a structure for such special pro-
cessing. Since conventional decoding circuits can be used as
the decoding units 14 for decoding the segment streams, the
whole structure of the image decoding apparatus can be sim-
plified.

The stream segmentation processing mentioned here is
executed in parallel by the M stream segmentation units 12 on
aslice basis as an example, which alleviates the load of stream
segmentation processing in each stream segmentation unit
12. Moreover, the first segmentation control unit 11 controls
the M stream segmentation units 12 to be equal in processing
amount. This being so, even in the case where the processing
amount of stream segmentation processing varies from one
slice to another, the load of stream segmentation processing
can be equally shared by the M stream segmentation units 12.

Besides, the stream segmentation processing is executed
on the M processing target areas in parallel. Therefore, in the
case where the bit stream has a large amount of data, the
number of decoding units can be increased to increase the
number of operations performed in parallel, thereby increas-
ing the processing speed. In addition, the number of stream
segmentation units can be increased, too, thereby increasing
the processing speed.

US 9,307,260 B2

87

In the image decoding apparatus 10 and the image decod-
ing method, the M processing target areas are designated to
the M stream segmentation units 12. That is, the stream seg-
mentation processing of segmenting a processing target area
into a plurality of structural units (for example, macroblock
lines) is allocated to each of the M stream segmentation units
12. This leads to a situation where the order of a plurality of
processing target areas included in the bit stream cannot be
maintained in the MxN segment streams generated by the M
stream segmentation units 12, making it impossible to simply
decode the MxN segment streams. In view of this, in the
image decoding apparatus 10 and the image decoding
method, for each designated processing target area, a portion
of each of at least one segment stream is selected from the
MxN segment streams generated by the M stream segmenta-
tion units 12, based on the position of the processing target
area, i.e. the position in decoding order of the processing
target area in the bit stream or the like. Respective portions of
N segment streams including the selected portion are decoded
in parallel. As a result, the MxN segment streams can be
decoded in the correct order. Furthermore, in the image
decoding apparatus 10 and the image decoding method, the
designation of the processing target areas and the selection of
the portions of the segment streams are performed in a cen-
tralized manner by a component other than the M stream
segmentation units 12 and the N decoding units 14. No spe-
cial processing or structure is required of each component
such as the M stream segmentation units 12 and the N decod-
ing units 14, in order to decode the MxN segment streams in
the correct order as mentioned above. Hence, parallel decod-
ing processing can be appropriately executed by a simple
structure.

Therefore, the image decoding apparatus 10 and the image
decoding method can produce the above-mentioned distinct
advantageous effects of the present invention and achieve the
above-mentioned objects of the present invention, without a
need for the segment stream buffer 152 and the like in the
above embodiments.

FIG. 42 is a block diagram showing a minimum structure of
animage coding apparatus according to the present invention.

An image coding apparatus 20 is an apparatus that gener-
ates a bit stream by coding image data, and has a minimum
structure for implementing the present invention. The image
coding apparatus 20 includes N coding units 21, a first com-
bination control unit 22, M stream combination units 23, a
second combination control unit 24, and a multiplexing unit
25. A component including the first combination control unit
22 and the second combination control unit 24 corresponds to
the stream combination control unit 340 in Embodiment 3.
The N coding units 21 correspond to the N encoding engines
320 in Embodiment 3. The M stream combination units 23
correspond to the M stream combination units 330 in
Embodiment 3. The multiplexing unit 25 corresponds to the
multiplexing unit 350 in Embodiment 3.

The N coding units 21 generate N (N is an integer equal to
or greater than 2) segment streams by coding, for each picture
included in the image data, N structural units (for example,
macroblock lines or the like) included in the picture in paral-
lel.

The first combination control unit 22 designates a process-
ing target area (for example, a slice, a picture, and the like)
included in the bit stream. That is, the first combination con-
trol unit 22 sends allocation control information indicating
the processing target area.

The M stream combination units 23 execute combination
processing in parallel on M processing target areas desig-
nated by the first combination control unit 22, the combina-

10

15

20

25

30

35

40

45

50

55

60

65

88

tion processing being a process of combining partial areas
that are respectively included in the N segment streams and
correspond to a processing target area to generate a combined
coding area which is the processing target area. That is, the M
stream combination units 23 execute the combination pro-
cessing (stream combination processing) in parallel. The par-
tial areas mentioned here are areas segmented from the pro-
cessing target area. The partial areas corresponding to the
processing target area are included respectively in the N seg-
ment streams by the N coding units 21. The partial areas are
combined into one combined coding area by the combination
processing. For example, in the case where the processing
target area is a slice, the slice is segmented into a plurality of
slice portions by the N coding units 21, and a new slice is
reconstructed as a combined coding area by the combination
processing. The stream combination unit 23 sequentially gen-
erates combined coding areas (slices), thereby generating and
outputting a partial stream including the combined coding
areas.

The second combination control unit 24 sequentially
selects, from M combined coding areas generated by the M
stream combination units 23, combined coding areas to be
multiplexed, based on positions, in the bit stream, of the M
processing target areas designated by the first combination
control unit 22. For example, the selection result is notified to
the multiplexing unit 25 as selection information, as in
Embodiment 3.

The multiplexing unit 25 generates the bit stream by mul-
tiplexing the M combined coding areas in order in which the
combined coding areas are selected by the second combina-
tion control unit 24.

Here, in the case where the partial areas are composed of a
plurality of coded structural units (for example, macroblock
lines or the like) when executing the combination processing,
each of the M stream combination units 23 generates the
combined coding area by segmenting the partial areas into the
plurality of coded structural units and recombining the plu-
rality of coded structural units. In the case where a slice
included in the image data is segmented into a plurality of
slice portions and coded and the plurality of coded slice
portions are assigned to the N segment streams when per-
forming the recombination, each of the M stream combina-
tion units 23 reconstructs a slice portion group made up of the
plurality of coded slice portions as a new slice in the com-
bined coding area.

FIG. 43 is a flowchart showing an image coding method by
the image coding apparatus 20.

This image coding method is a method whereby the image
coding apparatus 20 generates a bit stream by coding image
data, and includes: a coding step S60 of generating N (N is an
integer equal to or greater than 2) segment streams by coding,
for each picture included in the image data, a plurality of
structural units included in the picture in parallel, N being an
integer equal to or greater than 2; a first combination control
step S61 of designating a processing target area included in
the bit stream; a stream combination step S62 of executing
combination processing in parallel on M processing target
areas designated in the first combination control step S61, the
combination processing being a process of combining partial
areas that are respectively included in the N segment streams
and correspond to a processing target area to generate a com-
bined coding area which is the processing target area; a sec-
ond combination control step S63 of sequentially selecting,
from M combined coding areas generated in the stream com-
bination step S62, combined coding areas to be multiplexed,
based on positions, in the bit stream, of the M processing
target areas designated in the first combination control step

US 9,307,260 B2

89

S61; and a multiplexing step S64 of generating the bit stream
by multiplexing the M combined coding areas in order in
which the combined coding areas are selected in the second
combination control step S63.

In the stream combination step S62, in the case where the
partial areas are composed of a plurality of coded structural
units when executing the combination processing, the com-
bined coding area are generated by segmenting the partial
areas into the plurality of coded structural units and recom-
bining the plurality of coded structural units. Moreover, in the
case where a slice included in the image data is segmented
into a plurality of slice portions and coded and the plurality of
coded slice portions are assigned to the N segment streams
when performing the recombination, a slice portion group
made up of the plurality of coded slice portions is recon-
structed as a new slice in the combined coding area.

Though the combination processing is performed in paral-
lel in the image coding apparatus 20 and the image coding
method, the combination processing may instead be per-
formed serially. In such a case, the image coding apparatus 20
includes only one stream combination unit 23.

In the image coding apparatus 20 and the image coding
method described above, a picture is segmented into a plural-
ity of structural units such as macroblock lines, and each of
the plurality of macroblock lines is assigned to and coded by
a corresponding one of the N coding units 21. This enables the
N coding units 21 to equally share the load of coding process-
ing, with it being possible to appropriately execute parallel
coding processing. For example, even in the case where an
H.264/AVC coded picture is composed of one slice, the pic-
ture is segmented into a plurality of macroblock lines, so that
the load of coding one slice is not placed on one coding unit
21 but equally shared by the N coding units 21.

Moreover, the coding processing is allocated to the M
stream combination units 23 on a processing target area basis
by the processing target area designation by the first combi-
nation control unit 22, as a result of which the combination
processing can be performed by the M stream combination
units 23 in parallel.

When a picture is segmented into a plurality of macroblock
lines and coded, there is a possibility that a slice extending
over a plurality of macroblock lines is segmented into a plu-
rality of slice portions and these slice portions are sequen-
tially assigned to segment streams. That is, slice portions
which are segments of the slice are distributed in each seg-
ment stream. Such distributed slice portions are not in the
same order as in the image data. This being so, in the case
where there is a dependency between the plurality of consecu-
tive macroblock lines based on a predetermined code word,
the distributed slice portions cannot maintain the dependency.
In such a state, it is impossible to generate the bit stream
conforming to the corresponding coding scheme. Accord-
ingly, in the image coding apparatus 20 and the image coding
method, the slice portion group, i.e. the group of the distrib-
uted slice portions, is reconstructed as a new slice in the
combination processing. In so doing, the combined coding
area including the slice portion group can be generated in
conformance with the coding scheme.

Further, when the combination processing is allocated to
the M stream combination units 23 on a processing target area
basis and performed by the M stream combination units 23 in
parallel, the order of the plurality of processing target areas
included in the bit stream cannot be maintained in the M
combined coding areas (partial streams) generated by the
parallel combination processing. As a result, the M combined
coding areas cannot be multiplexed in the correct order.

20

25

30

40

45

90

In view of this, in the image coding apparatus 20 and the
image coding method, for each designated processing target
area, combined coding areas to be multiplexed are sequen-
tially selected from the M combined coding areas generated
by the M stream combination units 23, based on the position
of'the processing target area, i.e. the position in coding order
of the processing target area in the bit stream. The M com-
bined coding areas are then multiplexed in the order in which
the combined coding areas are selected. As a result, the M
combined coding areas can be multiplexed in the correct
order. Furthermore, in the image coding apparatus 20 and the
image coding method, the designation of the processing tar-
get areas and the selection of the combined coding areas to be
multiplexed are performed in a centralized manner by a com-
ponent other than the M stream combination units 23 and the
N coding units 21. No special processing or structure is
required of each component such as the M stream combina-
tion units 23 and the N coding units 21, in order to multiplex
the M combined coding areas in the correct order as men-
tioned above. Hence, parallel coding processing can be
appropriately executed by a simple structure.

Therefore, the image coding apparatus 20 and the image
coding method can produce the above-mentioned distinct
advantageous effects of the present invention and achieve the
above-mentioned objects of the present invention, without a
need for the partial stream buffer 363 and the like in the above
embodiment.

Though Embodiments 1 to 3 describe the case where one
MB line is treated as one structural unit and a picture is
segmented into a plurality of structural units, the structural
unit is not limited to one MB line. The structural unit may be
two MB lines, three MB lines, or a plurality of macroblocks
vertically arranged in a row in the picture. As an example, the
structural unit may be two MB lines in the case where the
picture is coded in MBAFF, and one MB line in the case
where the picture is not coded in MBAFF.

Though Embodiments 1 and 2 describe the case where the
stream segmentation control unit allocates the processing to
the M stream segmentation units on a slice basis, the process-
ing may be allocated on a larger unit basis, such as on a picture
basis or on a picture group basis where a picture group is
made up of a plurality of pictures.

Likewise, though Embodiment 3 describes the case where
the stream combination control unit allocates the processing
to the M stream combination units on a slice basis, the pro-
cessing may be allocated on a larger unit basis, such as on a
picture basis or on a picture group basis where a picture group
is made up of a plurality of pictures.

Though Embodiments 1 and 2 describe the case where the
stream segmentation unit inserts the slice header copy in the
segment stream and the decoding engine reads and decodes
the segment stream in which the slice header copy is inserted,
the stream segmentation unit may directly output the slice
header copy to the decoding engine without inserting the slice
header copy in the segment stream. For example, the stream
segmentation unit may determine whether or not the slice
header copy needs to be present immediately before the MB
line in the segment stream to be read by the decoding engine
and, when determining that the slice header copy needs to be
present, output the slice header copy to the decoding engine
immediately before the decoding engine reads the MB line.
Here, the stream segmentation unit may output only a part of
information included in the slice header copy to the decoding
engine, instead of outputting the slice header copy itself.

Though Embodiment 3 describes the case where the stream
combination unit generates and adds header information such
as an SPS, a PPS, and a slice header, the header information

US 9,307,260 B2

91

may be generated and added by a processing unit other than
the stream combination unit. In detail, when each of the N
encoding engines generates a segment stream, the encoding
engine may generate the segment stream to which the slice
header is added. In such a case, there is a possibility of an
overlap of slice headers for the same slice when the stream
combination unit combines segment streams. When this
occurs, the stream combination unit removes an unnecessary
slice header. Alternatively, the SPS, the PPS, and the slice
header may be generated and added by the multiplexing unit.

Though Embodiments 1 and 2 describe the case where the
stream segmentation unit executes one of the QP variation
modification and the QP variation insertion, the stream seg-
mentation unit may execute both the QP variation modifica-
tion and the QP variation insertion. In this case, the stream
segmentation unit may determine, for example, whether or
not a starting macroblock of an MB line includes a QP varia-
tion, perform replacement of the QP variation in the macrob-
lock or the like (Steps S318 to S322 in FIG. 21) when the
starting macroblock of the MB line includes the QP variation,
and perform accumulated QP variation output or the like
(Steps S352to S356 in F1G. 28) when the starting macroblock
of the MB line does not include the QP variation.

In the case where the stream segmentation unit executes
boththe QP variation modification and the QP variation inser-
tion, for example it is preferable that, when MB skip run
information is located at the beginning of an MB line, the skip
run modification unit determines whether or not a QP varia-
tion is inserted at the beginning of the MB line. The skip run
modification unit may then add preceding MB skip run infor-
mation to the MB skip run information (Step S210 in F1G. 18)
when the QP variation is not inserted at the beginning of the
MB line, and output each of the preceding MB skip run
information and the MB skip run information as MB skip run
information when the QP variation is inserted at the begin-
ning of the MB line.

Though Embodiments 1 to 3 describe the case where the
first code word is MB skip run information, the first code
word may not necessarily be MB skip run information. For
instance, the first code word may be a code word indicating
consecutive macroblocks of a different kind from a skipped
macroblock.

Though Embodiments 1 to 3 describe the case where the
second code word is a QP variation, the second code word
may not necessarily be a QP variation. For instance, the
second code word may be a code word indicating a variation
in coding coefficient between macroblocks other than a QP
variation.

The functional blocks in the block diagrams (FIGS. 1, 10,
12,17,23,24, 26, 29, 35,38A, and so on) may be realized by
LSI (Large Scale Integration) which is typically an integrated
circuit. The functional blocks may each be individually
implemented as one chip, or may be partly or wholly imple-
mented on one chip. As an example, the part (including the M
stream segmentation units 130 and the first to N-th decoding
engines 120) represented by the decoder 110 in FIG. 1 may be
included in one chip.

Though [.SI is mentioned here, the circuit may be called an
IC (Integrated Circuit), system LSI, super LSI, ultra LSI, or
the like, depending on the degree of integration.

The integrated circuit method is not limited to LSI, and
may be realized by a dedicated circuit or a general-purpose
processor. A FPGA (Field Programmable Gate Array) which
can be programmed or a reconfigurable processor which is
capable of reconfiguring connections and settings of circuit
cells in LSI may also be used after LSI manufacturing.

5

10

15

20

25

30

40

45

50

55

60

65

92

When an integrated circuit technology that replaces LSI
emerges from development of semiconductor technologies or
other derivative technologies, such a technology may be used
for integration of the functional blocks. For instance, biotech-
nology may be adapted in this way.

INDUSTRIAL APPLICABILITY

The image decoding apparatus and the image coding appa-
ratus according to the present invention respectively produce
advantageous effects of appropriately executing parallel
decoding processing and parallel coding processing by
simple structures, and are useful, for example, as a reproduc-
tion apparatus that decodes a 4k2k bit stream and a recording
apparatus that codes a 4k2k moving picture.

REFERENCE SIGNS LIST

10, 100, 200 Image decoding apparatus

11 First segmentation control unit

12, 130, 230 First to M-th stream segmentation units
(stream segmentation unit)

13 Second segmentation control unit

14 Decoding unit

20, 300, 300a Image coding apparatus

21 Coding unit

22 First combination control unit

23, 330, 3305 First to M-th stream combination units
(stream combination unit)

24 Second combination control unit

25, 350 Multiplexing unit

110, 210 Decoder

120, 220 First to N-th decoding engines (decoding engine)

130m, 330m Processing management unit

131 Start code detection unit

1324 EPB removal unit

1325 EPB insertion unit

133 Slice header insertion unit

133a NAL type determination unit

1335 Header insertion counter

133¢ Header address update unit

1334 Header buffer

134, 134a, 1345 Slice data processing unit

135a, 13554 Slice data layer decoding unit

136a, 1365 Macroblock layer decoding unit

137a, 1375 Skip run modification unit

138, 1384, 1385 QP delta modification unit

139, 1394, 1396 Segment boundary detection unit

140 Stream segmentation control unit

150 Memory

151 Stream buffer

152 First to M-th segment stream buffers (segment stream
buftfer)

153 Frame memory

160 Skip run extraction unit

161 Skip run segmentation unit

162 Skip run accumulation and holding unit

163 Addition unit

164 Skip run coding unit

238, 2384, 2385 QP delta insertion unit

310 Encoder

320 First to N-th encoding engines (encoding engine)

331 Start code detection unit

332a EPB removal unit

332b EPB insertion unit

333 Header insertion unit

334a, 33456 Slice data processing unit

US 9,307,260 B2

93

335a, 3355 Slice data layer analysis unit

336a, 3365 Macroblock layer analysis unit

337a Skip run modification unit

338, 3384, 3386 QP delta modification unit

339q, 3395 Segment boundary detection unit

340 Stream combination control unit

360 Memory

361 Frame memory

362 Segment stream buffer

363 First to M-th partial stream buffers (partial stream
buffer)

The invention claimed is:

1. An image decoding apparatus that decodes a bit stream

generated by coding image data, said image decoding appa-
ratus comprising:

a processor;

a non-transitory computer-readable medium having stored
thereon executable instructions, which when executed
by the processor, cause the image decoding apparatus to:

designate processing target areas included in the bit
stream;

generate MxN segment streams by executing stream seg-
mentation processing in parallel on M processing target
areas of the designated processing target areas;

execute the stream segmentation processing on one of the
M processing target areas each time M processing target
areas are designated, the stream segmentation process-
ing being a process of generating at least a portion of N
segment streams from one of the M processing target
areas, M being an integer equal to or greater than 2, and
N being an integer equal to or greater than 2;

for each processing target area of the designated process-
ing target areas, select a portion of each of at least one
segment stream from the generated MxN segment
streams, based on a position of the respective processing
target area in the bit stream;

each time the portion of each of the at least one segment
stream is selected, decode respective portions of the N
segment streams in parallel, the portions of the N seg-
ment streams including the portion of each of the at least
one segment stream,

execute the stream segmentation processing, by segment-
ing one of the processing target areas into a plurality of
structural units and assigning each of the plurality of
structural units to a portion of a corresponding one of the
generated N segment streams; and

foraslice included in the one of the processing target areas,
the slice being segmented into a plurality of slice por-
tions and the plurality of slice portions being assigned to
a plurality of segment streams as a result of segmenting
the one of the processing target areas into the plurality of
structural units, reconstruct, for each of the plurality of
segment streams, a slice portion group made up of one or
more slice portions assigned to the segment stream, as a
new slice.

2. The image decoding apparatus according to claim 1,

wherein the executable instructions, when executed by the
processor, further cause the image decoding apparatus to
analyze each piece of first header information included
in the bit stream and generate the N segment streams
based on a result of the analysis, irrespective of the
designated processing target areas.

3. The image decoding apparatus according to claim 1,

wherein the executable instructions, when executed by the
processor, further cause the image decoding apparatus to
generate N segment streams that include second header
information included in the bit stream, and

10

15

20

25

30

35

40

45

50

94

generate N segment streams that do not include the second
header information.

4. The image decoding apparatus according to claim 1,

wherein the executable instructions, when executed by the
processor, further cause the image decoding apparatus to
generate selection information indicating the selected
portion of the segment stream, and output the generated
selection information, and

decode the portions of the N segment streams indicated by
the outputted selection information, in parallel.

5. The image decoding apparatus according to claim 4,

wherein the executable instructions, when executed by the
processor, further cause the image decoding apparatus to
output the selection information including a data size of
the selected portion of the segment stream, and

to specify the portions of the N segment streams based on
the data size included in the outputted selection infor-
mation, and decode the specified portions in parallel.

6. The image decoding apparatus according to claim 5,

wherein the executable instructions, when executed by the
processor, further cause the image decoding apparatus to
output the selection information including, as a data
size, anumber of bits or a number of data structural units
constituting each of the N segment streams.

7. The image decoding apparatus according to claim 1,

wherein the executable instructions, when executed by the
processor, further cause the image decoding apparatus
to:

judge whether or not the stream segmentation processing
executed on the designated M processing target area is
completed; and

in the case of judging that the stream segmentation pro-
cessing is completed, preferentially designate a new pro-
cessing target area.

8. The image decoding apparatus according to claim 1,

wherein in the case where a first slice portion is decoded
and included in an assigned segment stream from among
the N segment streams and a second slice portion is
decoded and included in an another assigned segment
stream from among the N segment streams, the first slice
portion and the second slice portion being spatially adja-
cent to each other:

the executable instructions, when executed by the proces-
sor, further cause the image decoding apparatus to start
decoding the first slice portion before decoding the sec-
ond slice portion; and

to obtain adjacency information generated as a result of the
decoding ofthe first slice portion, and decode the second
slice portion using the adjacency information or decode
the second slice portion without using the adjacency
information.

9. The image decoding apparatus according to claim 1,

wherein the executable instructions, when executed by the
processor, further cause the image decoding apparatus to
designate, as a processing target area of the processing
target areas, a slice, a picture, or a picture group made up
of a plurality of pictures in the bit stream.

10. An image decoding method for decoding a bit stream

generated by coding image data, said image decoding method

60 comprising:

65

designating processing target areas included in the bit
stream;

generating MxN segment streams by executing stream seg-
mentation processing in parallel on M processing target
areas designated in said designating, the stream segmen-
tation processing being a process of generating at least a
portion of N segment streams from one of the M pro-

US 9,307,260 B2

95

cessing target areas each time M processing target areas
are designated in said designating, M being an integer
equal to or greater than 2, and N being an integer equal
to or greater than 2;

selecting, for each processing target area of the processing
target areas designated in said designating, a portion of
each of at least one segment stream from the MxN
segment streams generated in said generating, based on
a position of the respective processing target area in the
bit stream; and

decoding, each time the portion of each of the at least one
segment stream is selected in said selecting, respective
portions of the N segment streams in parallel, the por-
tions of the N segment streams including the portion of
each of the at least one segment stream,

wherein said generating includes:

executing the stream segmentation processing, by seg-
menting one of the processing target areas into a plural-
ity of structural units and assigning each of the plurality
of structural units to a portion of a corresponding one of
the generated N segment streams; and

foraslice included in the one of the processing target areas,
the slice being segmented into a plurality of slice por-
tions and the plurality of slice portions being assigned to
a plurality of segment streams as a result of segmenting
the one of the processing target areas into the plurality of
structural units, reconstructing, for each of the plurality
of'segment streams, a slice portion group made up of one
ormore slice portions assigned to the segment stream, as
a new slice.

11. An image coding apparatus that generates a bit stream

by coding image data, said image coding apparatus compris-

ing:

a processor;

a non-transitory computer-readable medium having stored
thereon executable instructions, which when executed
by the processor, cause the image coding apparatus to:

generate N segment streams by coding in parallel, for each
picture included in the image data, a plurality of struc-
tural units included in the picture, N being an integer
equal to or greater than 2;

designate processing target areas included in the bit
stream;

execute combination processing in parallel on M process-
ing target areas of the designated processing target areas,
the combination processing being a process of combin-
ing partial areas that are respectively included in the N
segment streams and correspond to a processing target
area of the designated processing target areas to generate
a combined coding area which is the processing target
area, M being an integer equal to or greater than 2;

sequentially select, from generated M combined coding
areas, combined coding areas to be multiplexed, based
on positions of designated M processing target areas in
the bit stream;

generate the bit stream by multiplexing the M combined
coding areas in an order in which the combined coding
areas are selected;

in the case where the partial areas include a plurality of
coded structural units when executing the combination
processing, generate the combined coding area by seg-
menting the partial areas into the plurality of coded
structural units and recombining the plurality of coded
structural units; and

for a slice included in the image data, the slice being
segmented into a plurality of slice portions and being
coded and the plurality of coded slice portions assigned

10

15

20

30

40

45

50

55

96

to the N segment streams when performing the recom-
bination, reconstruct a slice portion group made up of
the plurality of coded slice portions as a new slice in the
combined coding area.

12. The image coding apparatus according to claim 11,

wherein the executable instructions, when executed by the
processor, further cause the image coding apparatus to,
each time a combined coding area to be multiplexed is
selected, generate selection information indicating the
selected combined coding area, and output the generated
selection information, and

to, each time the selection information is obtained, multi-
plex the combined coding area indicated by the selection
information into the bit stream.

13. The image coding apparatus according to claim 12,

wherein the executable instructions, when executed by the
processor, further cause the image coding apparatus to
output the selection information including a data size of
the selected combined coding area, and

to multiplex the combined coding area of the data size
included in the selection information, into the bit stream.

14. The image coding apparatus according to claim 11,

wherein the executable instructions, when executed by the
processor, further cause the image coding apparatus to:

judge whether or not the executed combination processing
is completed; and

in the case of judging that the combination processing is
completed, preferentially designate a new processing
target area.

15. The image coding apparatus according to claim 11,

wherein in the case where a first structural unit is coded and
assigned from among N structural units and a second
structural unit is coded and assigned from among the N
structural units, the first structural unit and the second
structural unit being adjacent to each other in the picture:

the executable instructions, when executed by the proces-
sor, further cause the image coding apparatus to start
coding the first structural unit before coding the second
structural unit; and

to obtain adjacency information generated by the coding of
the first structural unit, and code the second structural
unit using the adjacency information or code the second
structural unit without using the adjacency information.

16. An image coding method for generating a bit stream by

coding image data, said image coding method comprising:

generating N segment streams by coding in parallel, for
each picture included in the image data, a plurality of
structural units included in the picture, N being an inte-
ger equal to or greater than 2;

designating processing target areas included in the bit
stream;

executing combination processing in parallel on M pro-
cessing target areas designated in said designating, the
combination processing being a process of combining
partial areas that are respectively included in the N seg-
ment streams and correspond to a processing target area
of the processing target areas designated in said desig-
nating to generate a combined coding area which is the
processing target area, M being an integer equal to or
greater than 2;

sequentially selecting, from M combined coding areas
generated in said executing, combined coding areas to
be multiplexed, based on positions of the M processing
target areas in the bit stream, the M processing target
areas being designated in said designating; and

US 9,307,260 B2
97

generating the bit stream by multiplexing the M combined
coding areas in order in which the combined coding
areas are selected in said sequentially selecting,

wherein said executing includes:

in the case where the partial areas include a plurality of 5
coded structural units when executing the combination
processing, generating the combined coding area by seg-
menting the partial areas into the plurality of coded
structural units and recombining the plurality of coded
structural units; and 10

for a slice included in the image data, the slice being
segmented into a plurality of slice portions and being
coded and the plurality of coded slice portions assigned
to the N segment streams when performing the recom-
bination, reconstructing a slice portion group made up of 15
the plurality of coded slice portions as a new slice in the
combined coding area.

#* #* #* #* #*

98

